Cho số phức \(z=10-2i\) . Phần thực và phần ảo của số phức \(\overline z \) là
A. Phần thực bằng - 10 và phần ảo của số phức bằng \(-2i\).
B. Phần thực bằng - 10 và phần ảo bằng - 2.
C. Phần thực bằng 10 và phần ảo bằng 2.
D. Phần thực bằng 10 và phần ảo bằng 2i.
Lời giải của giáo viên
ToanVN.com
Số phức của \(z=10-2i\) là \(\overline z = 10 + 2i\)
Vậy phần thực của \(\overline z \) là 10 và phần ảo 2.
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số nào dưới đây đồng biến trên tập xác định của nó?
Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\left( {a,b,c,d \in R} \right)\) có đồ thị như hình vẽ. Đồ thị hàm số \(g\left( x \right) = \frac{{\left( {{x^2} + 4x + 3} \right)\sqrt {{x^2} + x} }}{{x\left[ {{{\left( {f\left( x \right)} \right)}^2} - 2f\left( x \right)} \right]}}\) có bao nhiêu đường tiệm cận đứng?
.png)
Cho \(\int\limits_0^1 {f\left( x \right)} dx = 3\) và \(\int\limits_1^2 {f\left( x \right)} dx = 2\) . Khi đó \(\int\limits_0^2 {f\left( x \right)} dx\)
Khi quay một tam giác vuông (kể cả các điểm trong của tam giác vuông đó) quanh đường thẳng chứa một cạnh góc vuông ta được
Cho cấp số cộng \((u_n)\), biết \({u_1} = - 5,d = 2\). Số 81 là số hạng thứ bao nhiêu?
Cho hàm số \(y=f(x)\) có đạo hàm liên tục trên đoạn [- 2;1] thỏa mãn \(f(0=1\) và \({\left( {f\left( x \right)} \right)^2}.f'\left( x \right) = 3{x^2} + 4x + 2.\) Giá trị lớn nhất của hàm số \(y=f(x)\) trên đoạn [- 2;1] là:
Gọi \(x_1, x_2\) là hai nghiệm của phương trình \({2^x}{.5^{{x^2} - 2x}} = 1\). Khi đó tổng \(x_1+x_2\) bằng
Có 2 học sinh lớp A, 3 học sinh lớp B và 4 học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh lớp B. Hỏi có bao nhiêu cách xếp hàng như vậy?
Họ nguyên hàm của hàm số \(f\left( x \right) = {2^{2x}}\) là
Trong không gian Oxyz, xét mặt cầu (S) có phương trình dạng \({x^2} + {y^2} + {z^2} - 4x + y - 2az + 10a = 0\). Tập hợp các giá trị thực của a để (S) có chu vi đường tròn lớn bằng \(8\pi\) là
Cho tứ diện ABCD có AB = AC = AD và \(\widehat {BAC} = \widehat {BAD} = {60^0}\). Xác định góc giữa hai đường thẳng AB và CD
Cho hai hàm số \(y = {x^3} + a{x^2} + bx + c\left( {a,b,c \in R} \right)\) có đồ thị (C) và \(y = m{x^2} + nx + p\left( {m,n,p \in R} \right)\) có đồ thị (P) như hình vẽ. Diện tích hình phẳng giới hạn bởi (C) và (P) có giá trị nằm trong khoảng nào sau đây?
.png)
Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)\) trên tập số thực R và đồ thị của hàm số \(y=f(x)\) như hình vẽ. Khi đó, đồ thị của hàm số \(y = {\left( {f\left( x \right)} \right)^2}\) có
.png)
Tính tổng các giá trị nguyên của tham số \(m \in \left[ { - 50;50} \right]\) sao cho bất phương trình \(m{x^4} - 4x + m \ge 0\) nghiệm đúng với mọi \(x \in R\) .
Cho \(x,y > 0\) và thỏa mãn \(\left\{ \begin{array}{l}
{x^2} - xy + 3 = 0\\
2x + 3y - 14 \le 0
\end{array} \right.\). Tính tổng giá trị lớn nhất và nhỏ nhất của biểu thức \(P = 3{x^2}y - x{y^2} - 2{x^3} + 2x\)?


