Cho số phức \(z=x+yi\left( x,y\in \mathbb{R} \right)\) có phần thực khác 0. Biết số phức \(w=i{{z}^{2}}+2\overline{z}\) là số thuần ảo. Tập hợp các điểm biểu diễn của z là một đường thẳng đi qua điểm nào dưới đây?
A. M(0;1)
B. N(2;-1)
C. P(1;3)
D. Q(1;1)
Lời giải của giáo viên
ToanVN.com
Ta có \(z=x+yi\left( x,y\in \mathbb{R};x\ne 0 \right)\)
Mặt khác \(w=i{{z}^{2}}+2\overline{z}=i{{\left( x+yi \right)}^{2}}+2\left( x-yi \right)=2\left( x-xy \right)+\left( {{x}^{2}}-{{y}^{2}}-2y \right)i\)
Vì w là số thuần ảo nên x-xy=0 \( \Leftrightarrow \left[ \begin{array}{l} x = 0\,\,{\rm{(L)}}\\ y - 1 = 0\,\,(N) \end{array} \right.\)
Vậy tập hợp các điểm biểu diễn số phức z là đường thẳng có phương trình y-1=0 (trừ điểm \(M\left( 0;1 \right)\)), do đó đường thẳng này đi qua điểm \(Q\left( 1;1 \right)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right) = {\left( {\sqrt x - {1 \over {\sqrt x }}} \right)^3}\) Hàm số có đạo hàm \(f'\left( x \right)\) bằng:
Trong không gian với hệ trục tọa độ \(\text{Oxyz}\), cho ba điểm A(-1;0;0) , B(0;-2;0) và C(0;0;3) . Mặt phẳng đi qua ba điểm A,B,C có phương trình là
Với a là số thực dương tùy ý, \(\sqrt {{a^5}} \) bằng
Cho số phức z thỏa mãn \(\left| z \right|=1\). Tìm giá trị lớn nhất của biểu thức \(A=\left| 1+\frac{5i}{2} \right|\)
Tính thể tích khối hộp chữ nhật có các kích thước b, 2b, 3b
Cho hai số phức \({{z}_{1}}=2-3i{{,}^{{}}}{{z}_{2}}=1+i.\) Tìm số phức \(z={{z}_{1}}+{{z}_{2}}\).
Cho \({{z}_{1}}=4-2i\). Hãy tìm phần ảo của số phức \({{z}_{2}}={{\left( 1-2i \right)}^{2}}+\overline{{{z}_{1}}}\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\). Khẳng định nào sau đây là đúng?
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x+y-z-1=0 và (Q):x-2y-5=0. Khi đó giao tuyến của (P) và (Q) có một vectơ chỉ phương là
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x-2y+z-5=0. Điểm nào dưới đây thuộc (P)?
Nếu \(\int\limits_1^3 {f(x)dx} = 8\) thì \(\int\limits_1^3 {\left[ {\frac{1}{2}f\left( x \right) + 1} \right]dx} \) bằng
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right)\), SD = 2a. Gọi \(\alpha \) là góc giữa SC và mp (ABCD). Chọn khẳng định đúng trong các khẳng định sau ?
Trong một hộp bút gồm có 8 cây bút bi, 6 cây bút chì và 10 cây bút màu. Hỏi có bao nhiêu cách chọn ra một cây bút từ hộp bút đó?
Một hội nghị bàn tròn có các phái đoàn gồm 3 người Anh, 5 người Pháp, 7 người Mỹ. Hỏi có bao nhiêu cách xếp chỗ ngồi cho các thành viên, sao cho những người có cùng quốc tịch thì ngồi gần nhau:


