Cho một miếng tôn hình tròn tâm O, bán kính R. Cắt bỏ một phần miếng tôn theo một hình quạt OAB và gò phần còn lại thành một hình nón đỉnh O không có đáy (OA trùng với OB). Gọi S và S ' lần lượt là diện tích của miếng tôn hình tròn ban đầu và diện tích của miếng tôn còn lại. Tìm tỉ số \(\frac{{S'}}{S}\) để thể tích của khối nón đạt giá trị lớn nhất.
A. \(\frac{{\sqrt 2 }}{3}\)
B. \(\frac{1}{4}\)
C. \(\frac{1}{3}\)
D. \(\frac{{\sqrt 6 }}{3}\)
Lời giải của giáo viên
ToanVN.com
Diện tích hình tròn \(S = \pi {R^2}\)
Gọi bán kính đường tròn đáy hình nón là \(r\left( {0 < r < R} \right)\) ta có
\(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {r^2}\sqrt {{R^2} - {r^2}} \)
Xét hàm \(f\left( r \right) = {r^2}\sqrt {{R^2} - {r^2}} \) có
\(f'\left( r \right) = 2r\sqrt {{R^2} - {r^2}} + {r^2}.\frac{{ - r}}{{\sqrt {{R^2} - {r^2}} }} = \frac{{2r\left( {{R^2} - {r^2}} \right) - {r^3}}}{{\left( {{R^2} - {r^2}} \right)\sqrt {{R^2} - {r^2}} }} = \frac{{r\left( {2{R^2} - 3{r^2}} \right)}}{{\left( {{R^2} - {r^2}} \right)\sqrt {{R^2} - {r^2}} }}\)
\(f'\left( r \right) = 0 \Leftrightarrow r = \frac{{R\sqrt 2 }}{{\sqrt 3 }}\,\left( {do\,0 < r < R} \right)\):
Bảng biến thiên:
Do đó thể tích V đạt GTLN tại \(r = \frac{{R\sqrt 2 }}{{\sqrt 3 }}\). Khi đó \(S' = {S_{xq}} = \pi rl = \pi .\frac{{R\sqrt 2 }}{{\sqrt 3 }}.R = \frac{{\pi {R^2}\sqrt 2 }}{{\sqrt 3 }}\)
Vậy \(\frac{{S'}}{S} = \frac{{\pi {R^2}\sqrt 2 }}{3}:\pi {R^2} = \frac{{\sqrt 2 }}{{\sqrt 3 }} = \frac{{\sqrt 6 }}{3}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số nào dưới đây đồng biến trên tập xác định của nó?
Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\left( {a,b,c,d \in R} \right)\) có đồ thị như hình vẽ. Đồ thị hàm số \(g\left( x \right) = \frac{{\left( {{x^2} + 4x + 3} \right)\sqrt {{x^2} + x} }}{{x\left[ {{{\left( {f\left( x \right)} \right)}^2} - 2f\left( x \right)} \right]}}\) có bao nhiêu đường tiệm cận đứng?
.png)
Cho số phức \(z=10-2i\) . Phần thực và phần ảo của số phức \(\overline z \) là
Cho \(\int\limits_0^1 {f\left( x \right)} dx = 3\) và \(\int\limits_1^2 {f\left( x \right)} dx = 2\) . Khi đó \(\int\limits_0^2 {f\left( x \right)} dx\)
Khi quay một tam giác vuông (kể cả các điểm trong của tam giác vuông đó) quanh đường thẳng chứa một cạnh góc vuông ta được
Cho hàm số \(y=f(x)\) có đạo hàm liên tục trên đoạn [- 2;1] thỏa mãn \(f(0=1\) và \({\left( {f\left( x \right)} \right)^2}.f'\left( x \right) = 3{x^2} + 4x + 2.\) Giá trị lớn nhất của hàm số \(y=f(x)\) trên đoạn [- 2;1] là:
Cho cấp số cộng \((u_n)\), biết \({u_1} = - 5,d = 2\). Số 81 là số hạng thứ bao nhiêu?
Có 2 học sinh lớp A, 3 học sinh lớp B và 4 học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh lớp B. Hỏi có bao nhiêu cách xếp hàng như vậy?
Trong không gian Oxyz, xét mặt cầu (S) có phương trình dạng \({x^2} + {y^2} + {z^2} - 4x + y - 2az + 10a = 0\). Tập hợp các giá trị thực của a để (S) có chu vi đường tròn lớn bằng \(8\pi\) là
Gọi \(x_1, x_2\) là hai nghiệm của phương trình \({2^x}{.5^{{x^2} - 2x}} = 1\). Khi đó tổng \(x_1+x_2\) bằng
Họ nguyên hàm của hàm số \(f\left( x \right) = {2^{2x}}\) là
Cho tứ diện ABCD có AB = AC = AD và \(\widehat {BAC} = \widehat {BAD} = {60^0}\). Xác định góc giữa hai đường thẳng AB và CD
Cho hai hàm số \(y = {x^3} + a{x^2} + bx + c\left( {a,b,c \in R} \right)\) có đồ thị (C) và \(y = m{x^2} + nx + p\left( {m,n,p \in R} \right)\) có đồ thị (P) như hình vẽ. Diện tích hình phẳng giới hạn bởi (C) và (P) có giá trị nằm trong khoảng nào sau đây?
.png)
Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)\) trên tập số thực R và đồ thị của hàm số \(y=f(x)\) như hình vẽ. Khi đó, đồ thị của hàm số \(y = {\left( {f\left( x \right)} \right)^2}\) có
.png)
Cho \(x,y > 0\) và thỏa mãn \(\left\{ \begin{array}{l}
{x^2} - xy + 3 = 0\\
2x + 3y - 14 \le 0
\end{array} \right.\). Tính tổng giá trị lớn nhất và nhỏ nhất của biểu thức \(P = 3{x^2}y - x{y^2} - 2{x^3} + 2x\)?


