Cho khối lăng trụ \(ABC.A'B'C',\) khoảng cách từ \(C\) đến đường thẳng \(BB'\) bằng \(\sqrt{5},\) khoảng cách từ \(A\) đến các đường thẳng \(BB'\) và \(CC'\) lần lượt bằng \(1\) và \(2,\) hình chiếu vuông góc của \(A\) lên mặt phẳng \(\left( A'B'C' \right)\) là trung điểm \(M\) của \(B'C'\) và \(A'M=\sqrt{5}.\) Thể tích của khối lăng trụ đã cho bằng:
A. \(\frac{2\sqrt{5}}{3}\)
B. \(\frac{2\sqrt{15}}{3}\)
C. \(\sqrt{5}\)
D. \(\frac{\sqrt{15}}{3}\)
Lời giải của giáo viên
ToanVN.com
Qua \(M\) dựng mặt phẳng \(\left( P \right)\) vuông góc với \(AA'\) cắt các cạnh \(AA',\ BB',\ CC'\) lần lượt tại \(N,\ E,\ F.\)
Ta có: \(\left\{ \begin{align} & AA'\bot NE\Rightarrow NE=d\left( E,\ AA' \right)=d\left( N,\ BB' \right)=d\left( A,\ BB' \right)=1. \\ & AA'\bot NF\Rightarrow NF=d\left( F,\ AA; \right)=d\left( N,\ CC' \right)=d\left( A,\ CC' \right)=2 \\ & AA'\bot \left( P \right)\Rightarrow CC'\bot \left( P \right)\Rightarrow CC'\bot EF\Rightarrow EF=d\left( E,\ CC' \right)=d\left( F,\ BB' \right)=d\left( C,\ BB' \right)=\sqrt{5}. \\ \end{align} \right.\)
Có: \(N{{E}^{2}}+N{{F}^{2}}=EF{{'}^{2}}\Rightarrow \Delta NEF\) vuông tại \(N.\) (định lý Pi-ta-go đảo)
\(\Rightarrow MN=\frac{1}{2}EF=\frac{\sqrt{5}}{2}.\)Mà: \(\frac{ME}{MF}=\frac{MB'}{MC'}=1\Rightarrow ME=MF\) (định lý Ta-lét)\(\Rightarrow M\) là trung điểm của \(EF.\)
Xét tam giác \(AA'M\) vuông tại \(M\) ta có:
\(\frac{1}{M{{N}^{2}}}=\frac{1}{A{{M}^{2}}}+\frac{1}{A'{{M}^{2}}}\Leftrightarrow \frac{4}{5}=\frac{1}{A{{M}^{2}}}+\frac{1}{5}\Leftrightarrow AM=\frac{\sqrt{15}}{3}.\)
Ta có: \(\left\{ \begin{align} & \left( P \right)\bot AA' \\ & \left( A'B'C' \right)\bot AM \\ \end{align} \right.\Rightarrow \angle \left( \left( P \right),\ \left( A'B'C' \right) \right)=\angle \left( AA',\ AM \right)=\angle A'MA.\)
\(\Rightarrow \cos A'MA=\frac{AM}{AA'}=\frac{\frac{\sqrt{15}}{3}}{\sqrt{5+\frac{5}{3}}}=\frac{1}{2}.\)
Ta thấy \(\Delta NEF\) là hình chiếu vuông góc của \(\Delta A'B'C'\) lên mặt phẳng \(\left( P \right).\)
\(\begin{align} & \Rightarrow {{S}_{A'B'C'}}=\frac{{{S}_{NEF}}}{\cos A'MA}=\frac{\frac{1}{2}NE.NF}{\frac{1}{2}}=1.2=2. \\ & \Rightarrow {{V}_{ABC.A'B'C'}}={{S}_{A'B'C'}}.AM=2.\frac{\sqrt{15}}{3}=\frac{2\sqrt{15}}{3}. \\ \end{align}\)
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian \(Oxyz,\) cho hai điểm \(A\left( 5;-4;\ 2 \right)\) và \(B\left( 1;\ 2;\ 4 \right).\) Mặt phẳng đi qua \(A\) và vuông góc với đường thẳng \(AB\) có phương trình là:
Trong không gian \(Oxyz,\) mặt cầu \(\left( S \right):\ {{\left( x-5 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z+2 \right)}^{2}}=3\) có bán kính bằng:
Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y={{x}^{8}}+\left( m-3 \right){{x}^{5}}-\left( {{m}^{2}}-9 \right){{x}^{4}}+1\) đạt cực tiểu tại \(x=0?\)
Cho \(\int\limits_{1}^{e}{\left( 2+x\ln x \right)dx=a{{e}^{2}}+be+c}\) với \(a,\ b,\ c\) là các số hữu tỉ. Mệnh đề nào dưới đây đúng?
Cho hình chóp \(SABC\) có đáy là tam giác vuông cân tại \(C,\ BC=a,\ SA\) vuông góc với mặt phẳng đáy và \(SA=a.\) Khoảng cách từ \(A\) đến mặt phẳng \(\left( SBC \right)\) bằng:
Cho phương trình \({{2}^{x}}+m=\log2\left( x-m \right)\) với \(m\) là tham số. Có bao nhiêu giá trị nguyên của \(m\in \left( -18;\ 18 \right)\) để phương trình đã cho có nghiệm?
Cho \(a>0,\ b>0\) thỏa mãn \({{\log }_{2a+2b+1}}\left( 4{{a}^{2}}+{{b}^{2}}+1 \right)+{{\log }_{4ab+1}}\left( 2a+2b+1 \right)=2.\) Giá trị của \(a+2b\) bằng:
Xét các số phức \(z\) thỏa mãn \(\left( \overline{z}-2i \right)\left( z+2 \right)\) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức \(z\) là một đường tròn có bán kính bằng:
Cho hình chóp \(SABC\) có \(SA\) vuông góc với mặt phẳng đáy, \(AB=a\) và \(SB=2a.\) Góc giữa đường thẳng \(SB\) và mặt phẳng đáy bằng:
Cho hai hàm số \(y=f\left( x \right),\ y=g\left( x \right).\) Hai hàm số \(y=f'\left( x \right)\) và \(y=g'\left( x \right)\) có đồ thị hàm như hình vẽ bên, trong đó đường cong đậm hơn là đồ thị của hàm số \(y=g'\left( x \right).\) Hàm số \(h\left( x \right)=f\left( x+6 \right)-g\left( 2x+\frac{5}{2} \right)\) đồng biến trên khoảng nào dưới đây?
Cho hình phẳng \(\left( H \right)\) giới hạn bởi các đường \(y={{x}^{2}}+2,\ y=0,\ x=1,\ x=2.\) Gọi \(V\) là thể tích của khối tròn xoay được tạo thành khi quay \(\left( H \right)\) xung quanh trục \(Ox.\) Mệnh đề nào dưới đây đúng?
Cho hàm số \(y=a{{x}^{4}}+b{{x}^{2}}+c\ \left( a,\ b,\ c\in R \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là:
Từ một hộp chứa 10 quả cầu màu đỏ và 5 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng:


