Câu hỏi Đáp án 3 năm trước 61

Cho khối chóp tam giác \(S.ABC\) có đỉnh \(S\) và đáy là tam giác \(ABC\). Gọi \(V\) là thể tích của khối chóp. Mặt phẳng đi qua trọng tâm của ba mặt bên của khối chóp chia khối chóp thành hai phần. Tính theo \(V\) thể tích của phần chứa đáy của khối chóp. 

A. \(\dfrac{{37}}{{64}}V\). 

B. \(\dfrac{{27}}{{64}}V\). 

C. \(\dfrac{{19}}{{27}}V\). 

Đáp án chính xác ✅

D. \(\dfrac{8}{{27}}V\).

Lời giải của giáo viên

verified ToanVN.com

Gọi \(M,N,P\) lần lượt là trung điểm các cạnh \(AB,BC,AC\) và \({G_1};{G_2};{G_3}\) lần lượt là trọng tâm các tam giác \(SAB;SBC;SAC.\)

Theo tính chất trọng tâm ta có \(\dfrac{{S{G_1}}}{{SM}} = \dfrac{{S{G_2}}}{{SN}} = \dfrac{{S{G_3}}}{{SP}} = \dfrac{2}{3}\)

Trong \(\left( {SBC} \right)\), qua \({G_2}\) kẻ đường thẳng song song với \(BC\) cắt \(SB,SC\) lần lượt tại \(E\) và \(F.\)

Trong \(\left( {SAC} \right)\), đường thẳng \(F{G_3}\) cắt \(SA\) tại \(D.\)

Lúc này \(\left( {{G_1}{G_2}{G_3}} \right) \equiv \left( {DEF} \right)\)

Vì \(EF//BC \Rightarrow \dfrac{{SE}}{{SB}} = \dfrac{{SF}}{{SC}} = \dfrac{{S{G_2}}}{{SN}} = \dfrac{2}{3}\)  (theo định lý Ta-lét)

Lại có trong \(\Delta SPC\) có \(\dfrac{{S{G_3}}}{{SP}} = \dfrac{{SF}}{{SC}} = \dfrac{2}{3} \Rightarrow F{G_3}//PC \Rightarrow DF//BC \Rightarrow \dfrac{{SD}}{{SA}} = \dfrac{{SF}}{{SC}} = \dfrac{2}{3}\)

Từ đó ta có \(\dfrac{{{V_{S.DEF}}}}{{{V_{S.ABC}}}} = \dfrac{{SD}}{{SA}}.\dfrac{{SE}}{{SB}}.\dfrac{{SF}}{{SC}} = \dfrac{2}{3}.\dfrac{2}{3}.\dfrac{2}{3} = \dfrac{8}{{27}} \Rightarrow {V_{S.DEF}} = \dfrac{8}{{27}}V\)

Nên phần chứa đáy của hình chóp là \(V - \dfrac{8}{{27}}V = \dfrac{{19}}{{27}}V\)

Chọn C.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho tứ diện ABCD có M, N là hai điểm phân biệt trên cạnh AB. Mệnh đề nào sau đây đúng? 

Xem lời giải » 3 năm trước 75
Câu 2: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu\(\left( S \right)\) tâm \(I(a;b;c)\) bán kính bằng 1, tiếp xúc mặt phẳng \(\left( {Oxz} \right).\) Khẳng định nào sau đây đúng? 

Xem lời giải » 3 năm trước 71
Câu 3: Trắc nghiệm

Trong không gian \(Oxyz\), cho mặt cầu \((S):{\left( {x + 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\). Xác định tọa độ tâm của mặt cầu \(\left( S \right)\). 

Xem lời giải » 3 năm trước 69
Câu 4: Trắc nghiệm

Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(a,\)đường cao \(SA = x.\) Góc giữa \(\left( {SBC} \right)\) và mặt đáy bằng \({60^0}\). Khi đó \(x\) bằng 

Xem lời giải » 3 năm trước 69
Câu 5: Trắc nghiệm

Với \(a\) là số thực dương khác \(1\) tùy ý, \({\log _{{a^2}}}{a^3}\) bằng 

Xem lời giải » 3 năm trước 69
Câu 6: Trắc nghiệm

Cho hình trụ có bán kính \(R\) và chiều cao\(\sqrt 3 R\). Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục d của hình trụ bằng \({30^0}\). Tính khoảng cách giữa AB và trục của hình trụ. 

Xem lời giải » 3 năm trước 68
Câu 7: Trắc nghiệm

Cho \(a\) và \(b\) lần lượt là số hạng thứ hai và thứ mười của một cấp số cộng có công sai \(d \ne 0.\) Giá trị của biểu thức \({\log _2}\left( {\dfrac{{b - a}}{d}} \right)\) là một số nguyên có số ước tự nhiên bằng 

Xem lời giải » 3 năm trước 68
Câu 8: Trắc nghiệm

Tìm điều kiện để hàm số  \(y = {\rm{a}}{{\rm{x}}^4} + bx + c(a \ne 0)\) có 3 điểm cực trị. 

Xem lời giải » 3 năm trước 68
Câu 9: Trắc nghiệm

Phương trình \({4^x} - m\,{.2^{x + 1}} + 2m = 0\) có hai nghiệm \({x_1}\;,\;{x_2}\) thỏa  \({x_1} + {x_2} = 3\) khi 

Xem lời giải » 3 năm trước 67
Câu 10: Trắc nghiệm

Trong không gian Oxyz, cho hai điểm A(2;-4;3) và B(2;2;7). Trung điểm của đoạn thẳng AB có tọa độ là 

Xem lời giải » 3 năm trước 67
Câu 11: Trắc nghiệm

Tìm tập nghiệm S của phương trình: \({\log _3}(2x + 1) - {\log _3}(x - 1) = 1\). 

Xem lời giải » 3 năm trước 67
Câu 12: Trắc nghiệm

Trong không gian Oxyz, cho điểm \(M(1; - 2;3)\). Gọi I là hình chiếu vuông góc của M  trên trục Ox. Phương trình nào sau đây là phương trình mặt cầu tâm I  bán kính IM ? 

Xem lời giải » 3 năm trước 66
Câu 13: Trắc nghiệm

Thể tích của khối chóp có diện tích đáy bằng \(6\) và chiều cao bằng \(4\) là 

Xem lời giải » 3 năm trước 66
Câu 14: Trắc nghiệm

Cho khối chóp tứ giác \(S.ABCD\)có đáy \(ABCD\) là hình thoi và \(SABC\) là tứ diện đều cạnh \(a\). Thể tích \(V\) của khối chóp \(S.ABCD\) là 

Xem lời giải » 3 năm trước 66
Câu 15: Trắc nghiệm

Cho tứ diện \(ABCD\)có các cạnh \(AB,AC\)và \(AD\) đôi một vuông góc với nhau. Gọi \({G_1},{G_2},{G_3}\)và \({G_4}\) lần lượt là trọng tâm các tam giác \(ABC,ABD,ACD\)và \(BCD\). Biết \(AB = 6a,\)\(AC = 9a\), \(AD = 12a\). Tính theo a thể tích khối tứ diện \({G_1}{G_2}{G_3}{G_4}\). 

Xem lời giải » 3 năm trước 66

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »