Lời giải của giáo viên
ToanVN.com
Hàm bậc bốn trùng phương \(y = a{x^4} + b{x^2} + c\,\,\left( {a \ne 0} \right)\) có 3 điểm cực trị \( \Leftrightarrow pt\,\,y' = 0\) có 3 nghiệm phân biệt \( \Leftrightarrow 4a{x^3} + 2bx = 0\) có 3 nghiệm phân biệt (*)
Mà \(4a{x^3} + 2bx = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = - \dfrac{b}{{2a}}\end{array} \right.\)
Khi đó, (*)\( \Leftrightarrow - \dfrac{b}{{2a}} > 0 \Leftrightarrow ab < 0\).
Chọn: C
CÂU HỎI CÙNG CHỦ ĐỀ
Cho tứ diện ABCD có M, N là hai điểm phân biệt trên cạnh AB. Mệnh đề nào sau đây đúng?
Trong không gian Oxyz, cho mặt cầu\(\left( S \right)\) tâm \(I(a;b;c)\) bán kính bằng 1, tiếp xúc mặt phẳng \(\left( {Oxz} \right).\) Khẳng định nào sau đây đúng?
Trong không gian \(Oxyz\), cho mặt cầu \((S):{\left( {x + 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\). Xác định tọa độ tâm của mặt cầu \(\left( S \right)\).
Với \(a\) là số thực dương khác \(1\) tùy ý, \({\log _{{a^2}}}{a^3}\) bằng
Cho hình trụ có bán kính \(R\) và chiều cao\(\sqrt 3 R\). Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục d của hình trụ bằng \({30^0}\). Tính khoảng cách giữa AB và trục của hình trụ.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(a,\)đường cao \(SA = x.\) Góc giữa \(\left( {SBC} \right)\) và mặt đáy bằng \({60^0}\). Khi đó \(x\) bằng
Cho \(a\) và \(b\) lần lượt là số hạng thứ hai và thứ mười của một cấp số cộng có công sai \(d \ne 0.\) Giá trị của biểu thức \({\log _2}\left( {\dfrac{{b - a}}{d}} \right)\) là một số nguyên có số ước tự nhiên bằng
Phương trình \({4^x} - m\,{.2^{x + 1}} + 2m = 0\) có hai nghiệm \({x_1}\;,\;{x_2}\) thỏa \({x_1} + {x_2} = 3\) khi
Trong không gian Oxyz, cho hai điểm A(2;-4;3) và B(2;2;7). Trung điểm của đoạn thẳng AB có tọa độ là
Tìm tập nghiệm S của phương trình: \({\log _3}(2x + 1) - {\log _3}(x - 1) = 1\).
Cho tứ diện \(ABCD\)có các cạnh \(AB,AC\)và \(AD\) đôi một vuông góc với nhau. Gọi \({G_1},{G_2},{G_3}\)và \({G_4}\) lần lượt là trọng tâm các tam giác \(ABC,ABD,ACD\)và \(BCD\). Biết \(AB = 6a,\)\(AC = 9a\), \(AD = 12a\). Tính theo a thể tích khối tứ diện \({G_1}{G_2}{G_3}{G_4}\).
Trong không gian Oxyz, cho điểm \(M(1; - 2;3)\). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào sau đây là phương trình mặt cầu tâm I bán kính IM ?
Thể tích của khối chóp có diện tích đáy bằng \(6\) và chiều cao bằng \(4\) là
Cho khối chóp tứ giác \(S.ABCD\)có đáy \(ABCD\) là hình thoi và \(SABC\) là tứ diện đều cạnh \(a\). Thể tích \(V\) của khối chóp \(S.ABCD\) là
Trong không gian \(Oxyz\) cho \(A\left( {1; - 1;2} \right)\), \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = 3\end{array} \right.\), \(C\left( {0;1; - 2} \right)\). Gọi \(M\left( {a;b;c} \right)\) là điểm thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho biểu thức \(S = \overrightarrow {MA} .\overrightarrow {MB} + 2\overrightarrow {MB} .\overrightarrow {MC} + 3\overrightarrow {MC} .\overrightarrow {MA} \) đạt giá trị nhỏ nhất. Khi đó \(T = 12a + 12b + c\) có giá trị là


