Cho hình lăng trụ \(ABC.{A}'{B}'{C}'\)có thể tích là V. Gọi \(M,\,N,\,P\) là trung điểm các cạnh \(A{A}',\,AB,\,{B}'{C}'\). Mặt phẳng \(\left( MNP \right)\) chia khối lăng trụ thành hai phần. Tính thể tích phần chứa đỉnh B theo V.
A. \(\frac{47V}{144}\).
B. \(\frac{49V}{144}\)
C. \(\frac{37V}{72}\).
D. \(\frac{V}{3}\).
Lời giải của giáo viên
ToanVN.com
.png)
Ta dựng được thiết diện là ngũ giác MNQPR.
Đặt \(d\left( B;\left( A'B'C' \right) \right)=h,A'B'=a,d\left( C;A'B' \right)=2b.\)
Khi đó ta có thể tích lăng trụ \(V=\frac{1}{2}.d\left( C';A'B' \right).A'B'.d\left[ B;\left( A'B'C' \right) \right]=\frac{1}{2}.2b.a.h=abh.\)
Xét hình chóp L.JPB' có:
\(\frac{LN}{LJ}=\frac{LB}{LB'}=\frac{NB}{JB'}=\frac{1}{3}\) suy ra \(d\left[ L;\left( A'B'C' \right) \right]=\frac{3}{2}d\left[ B;\left( A'B'C' \right) \right]=\frac{3}{2}h,JB'=\frac{3}{2}A'B'=\frac{3}{2}a, d\left( P;A'B' \right)=\frac{1}{2}d\left( C';A'B' \right)=b.\)
Suy ra thể tích khối chóp L.JPB' là \({{V}_{LJPB'}}=\frac{1}{3}.\frac{3}{2}h.\frac{1}{2}.\frac{3}{2}a.b=\frac{3}{8}abh=\frac{3}{8}V.\)
Mặt khác ta có: \(\frac{{{V}_{L.NBQ}}}{{{V}_{L.JPB'}}}=\frac{LN}{LJ}.\frac{LB}{LB'}.\frac{LQ}{LP}=\frac{1}{3}.\frac{1}{3}.\frac{1}{3}=\frac{1}{27}\Rightarrow {{V}_{LNBQ}}=\frac{1}{27}{{V}_{LJPB'}}=\frac{1}{27}.\frac{3}{8}V=\frac{1}{72}V\)
\(\frac{{{V}_{J.RA'M}}}{{{V}_{LJPB'}}}=\frac{JM}{JL}.\frac{JA'}{JB'}.\frac{JR}{JP}=\frac{1}{3}.\frac{1}{3}.\frac{1}{2}=\frac{1}{18}\Rightarrow {{V}_{L.NBQ}}=\frac{1}{18}{{V}_{L.JPB'}}=\frac{1}{18}.\frac{3}{8}V=\frac{1}{48}V.\)
Suy ra thể tích khối đa diện \({{V}_{NQBB'PRA'}}={{V}_{LJPB'}}-{{V}_{L.NBQ}}-{{V}_{J.A'RM}}=\frac{3}{8}V-\frac{1}{72}V-\frac{1}{48}V=\frac{49}{144}V.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số \(y=\frac{2x-1}{x-1}\text{ }?\)
Đồ thị hàm số \(y=\frac{x+1}{2x+4}\) có tiệm cận ngang là đường thẳng nào trong các đường thẳng sau ?
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\left[ -2;4 \right]\) và có bảng biến thiên như sau:
.png)
Gọi \(M,\,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=\left| f\left( x \right) \right|\) trên đoạn \(\left[ -2;4 \right]\). Tính \({{M}^{2}}-{{m}^{2}}\).
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
.png)
Hàm số\(y=f\left( {{x}^{2}}-2 \right)\) đồng biến trên khoảng nào dưới đây?
Công thức tính thể tích V của khổi chóp có diện tích đáy B và chiều cao h là
Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị hàm số \(y={f}'\left( {{x}^{3}}+x+2 \right)\) như hình vẽ sau:
.jpg.png)
Hỏi hàm số \(y=f\left( \left| x \right| \right)\) có bao nhiêu điểm cực trị?
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
.jpg.png)
Cho hàm số \(y=f\left( x \right)\) có đạo hàm là \({f}'\left( x \right)={{\left( x-1 \right)}^{2}}\left( 3-x \right)\left( {{x}^{2}}-x-1 \right)\). Hỏi hàm số \(f\left( x \right)\) có bao nhiêu điểm cực tiểu?
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như sau:
.png)
Giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ -1;1 \right]\) là:
Cho khối lăng trụ có diện tích đáy \(B=8\) và chiều cao \(h=6\) . Thể tích của khối lăng trụ đã cho bằng.
Một vật rơi tự do theo phương trình \(S\left( t \right)=\frac{1}{2}g{{t}^{2}}\) trong đó \(g\approx 9,8m/{{s}^{2}}\) là gia tốc trọng trường. Vận tốc tức thời tại thời điểm \(t=5s\) là:
Tìm giá trị nhỏ nhất của hàm số \(y={{x}^{3}}-6{{x}^{2}}+2\) trên đoạn \(\left[ -1;2 \right]\).
Có bao nhiêu giá trị nguyên thuộc đoạn \(\left[ -10;10 \right]\) của \(m\) để giá trị lớn nhất của hàm số \(y=\frac{2x+m}{x+1}\) trên đoạn \(\left[ -4;-2 \right]\) không lớn hơn 1?
Đường cong sau là đồ thị của hàm số nào trong các hàm số đã cho dưới đây?
.jpg.png)


