Lời giải của giáo viên
ToanVN.com
* Nhận xét \(y=f\left( \left| x \right| \right)\) là hàm số chẵn nên đề thị nhận trục tung Oy làm trục đối xứng, nên ta xét cực trị phải trục Oy
Xét \(x>0\) ta có \(y=f\left( \left| x \right| \right)=f\left( x \right)\)
* Từ đồ thị hàm số \(y=f'\left( {{x}^{3}}+x+2 \right)\) ta thấy
\(f'\left( {{x^3} + x + 2} \right) = 0 \Rightarrow \left[ \begin{array}{l} x \approx - 1.5\\ x \approx - 0,5\\ x \approx 0.9 \end{array} \right.\)
* Xét \(y=f\left( x \right)\) với \(x>0\)
\(y'=f'\left( x \right)\)
Đặt \(x={{t}^{3}}+t+2=\left( t+1 \right)\left( {{t}^{2}}-t+2 \right);x>0\Rightarrow t>-1\)
Khi đó \(y' = f'\left( {{t^3} + t + 2} \right) = 0 \Rightarrow \left[ \begin{array}{l} t \approx 1.5\\ t \approx - 0,5\\ t \approx 0.9 \end{array} \right. \Rightarrow \left[ \begin{array}{l} x \approx - 2.875 < 0\\ x \approx 1.375 > 0\\ x \approx 3.32 > 0 \end{array} \right.\)
\(\Rightarrow y'=f'\left( x \right)\) có 2 nghiệm dương
\(\Rightarrow \) đồ thị \(y=f\left( x \right)\) có 2 điểm cực trị bên phải Oy.
\(\Rightarrow y=f\left( \left| x \right| \right)\) có 5 cực trị (2 cực trị bên phải + 2 cực trị bên trái + 1 giao với trục Oy).
CÂU HỎI CÙNG CHỦ ĐỀ
Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số \(y=\frac{2x-1}{x-1}\text{ }?\)
Đồ thị hàm số \(y=\frac{x+1}{2x+4}\) có tiệm cận ngang là đường thẳng nào trong các đường thẳng sau ?
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
.png)
Hàm số\(y=f\left( {{x}^{2}}-2 \right)\) đồng biến trên khoảng nào dưới đây?
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\left[ -2;4 \right]\) và có bảng biến thiên như sau:
.png)
Gọi \(M,\,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=\left| f\left( x \right) \right|\) trên đoạn \(\left[ -2;4 \right]\). Tính \({{M}^{2}}-{{m}^{2}}\).
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
.jpg.png)
Công thức tính thể tích V của khổi chóp có diện tích đáy B và chiều cao h là
Có bao nhiêu giá trị nguyên thuộc đoạn \(\left[ -10;10 \right]\) của \(m\) để giá trị lớn nhất của hàm số \(y=\frac{2x+m}{x+1}\) trên đoạn \(\left[ -4;-2 \right]\) không lớn hơn 1?
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như sau:
.png)
Giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ -1;1 \right]\) là:
Cho khối lăng trụ có diện tích đáy \(B=8\) và chiều cao \(h=6\) . Thể tích của khối lăng trụ đã cho bằng.
Một vật rơi tự do theo phương trình \(S\left( t \right)=\frac{1}{2}g{{t}^{2}}\) trong đó \(g\approx 9,8m/{{s}^{2}}\) là gia tốc trọng trường. Vận tốc tức thời tại thời điểm \(t=5s\) là:
Tìm giá trị nhỏ nhất của hàm số \(y={{x}^{3}}-6{{x}^{2}}+2\) trên đoạn \(\left[ -1;2 \right]\).
Đường cong sau là đồ thị của hàm số nào trong các hàm số đã cho dưới đây?
.jpg.png)
Hàm số \(y=\frac{3\sin x+5}{1-c\text{os}x}\) xác định khi :
Cho hàm số \(y=f\left( x \right)\) có đạo hàm là \({f}'\left( x \right)={{\left( x-1 \right)}^{2}}\left( 3-x \right)\left( {{x}^{2}}-x-1 \right)\). Hỏi hàm số \(f\left( x \right)\) có bao nhiêu điểm cực tiểu?
.jpg.png)


