Lời giải của giáo viên
ToanVN.com
.png)
\({{V}_{ABCD.A'B'C'D'}}=2a.3a.3a=18{{a}^{3}}.\)
\({{V}_{E.BCD}}=\frac{1}{3}d\left( E;\left( BCD \right) \right).{{S}_{BCD}}.\)
Vì \(B'C'//\left( ABCD \right)\) nên \(d\left( E;\left( BCD \right) \right)=d\left( B';\left( BCD \right) \right)=d\left( B';\left( ABCD \right) \right).\)
\({{S}_{BCD}}=\frac{1}{2}{{S}_{ABCD}}.\)
Do đó: \({{V}_{E.BCD}}=\frac{1}{3}d\left( B';\left( ABCD \right) \right).\frac{1}{2}.{{S}_{ABCD}}=\frac{1}{2}{{V}_{B'.ABCD}}=\frac{1}{2}.\frac{1}{3}{{V}_{ABCD.A'B'C'D'}}\)
\(\Rightarrow {{V}_{E.BCD}}=\frac{1}{6}.18{{a}^{3}}=3{{a}^{3}}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số \(y=\frac{2x-1}{x-1}\text{ }?\)
Đồ thị hàm số \(y=\frac{x+1}{2x+4}\) có tiệm cận ngang là đường thẳng nào trong các đường thẳng sau ?
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
.png)
Hàm số\(y=f\left( {{x}^{2}}-2 \right)\) đồng biến trên khoảng nào dưới đây?
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\left[ -2;4 \right]\) và có bảng biến thiên như sau:
.png)
Gọi \(M,\,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=\left| f\left( x \right) \right|\) trên đoạn \(\left[ -2;4 \right]\). Tính \({{M}^{2}}-{{m}^{2}}\).
Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị hàm số \(y={f}'\left( {{x}^{3}}+x+2 \right)\) như hình vẽ sau:
.jpg.png)
Hỏi hàm số \(y=f\left( \left| x \right| \right)\) có bao nhiêu điểm cực trị?
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
.jpg.png)
Công thức tính thể tích V của khổi chóp có diện tích đáy B và chiều cao h là
Tìm giá trị nhỏ nhất của hàm số \(y={{x}^{3}}-6{{x}^{2}}+2\) trên đoạn \(\left[ -1;2 \right]\).
Một vật rơi tự do theo phương trình \(S\left( t \right)=\frac{1}{2}g{{t}^{2}}\) trong đó \(g\approx 9,8m/{{s}^{2}}\) là gia tốc trọng trường. Vận tốc tức thời tại thời điểm \(t=5s\) là:
Cho khối lăng trụ có diện tích đáy \(B=8\) và chiều cao \(h=6\) . Thể tích của khối lăng trụ đã cho bằng.
Có bao nhiêu giá trị nguyên thuộc đoạn \(\left[ -10;10 \right]\) của \(m\) để giá trị lớn nhất của hàm số \(y=\frac{2x+m}{x+1}\) trên đoạn \(\left[ -4;-2 \right]\) không lớn hơn 1?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm là \({f}'\left( x \right)={{\left( x-1 \right)}^{2}}\left( 3-x \right)\left( {{x}^{2}}-x-1 \right)\). Hỏi hàm số \(f\left( x \right)\) có bao nhiêu điểm cực tiểu?
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như sau:
.png)
Giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ -1;1 \right]\) là:
Đường cong sau là đồ thị của hàm số nào trong các hàm số đã cho dưới đây?
.jpg.png)


