Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình chữ nhật \(AB=a,AD=a\sqrt{2},SA\bot \left( ABCD \right)\) và SA=a (tham khảo hình vẽ). Khoảng cách từ A đến mặt phẳng \(\left( SBD \right)\) bằng:
.png)
A. \(\frac{a\sqrt{21}}{7}\)
B. \(\frac{a\sqrt{10}}{5}\)
C. \(\frac{a\sqrt{3}}{2}\)
D. \(\frac{a\sqrt{2}}{5}\)
Lời giải của giáo viên
ToanVN.com
.png)
Trong \(\left( ABCD \right),\) kẻ \(AH\bot BD\)
Trong \(\left( SAH \right),\) kẻ \(AK\bot SH\)
Ta có: \(\left\{ \begin{align} & BD\bot SA \\ & BD\bot AH \\ \end{align} \right.\)\(\Rightarrow BD\bot \left( SAH \right)\Rightarrow BD\bot AK\)
Ta có: \(\left\{ \begin{align} & AK\bot SH \\ & AK\bot BD \\ \end{align} \right.\Rightarrow AK\bot \left( SBD \right)\Rightarrow d\left( A;\left( SBD \right) \right)=AK.\)
Áp dụng hệ thức lượng cho \(\Delta ABD\) vuông tại A và có đường cao AH ta có:
\(AH=\frac{AB.AD}{\sqrt{A{{B}^{2}}+A{{D}^{2}}}}=\frac{a.a\sqrt{2}}{\sqrt{{{a}^{2}}+{{\left( a\sqrt{2} \right)}^{2}}}}=\frac{{{a}^{2}}\sqrt{2}}{a\sqrt{3}}=\frac{a\sqrt{6}}{3}\)
Áp dụng hệ thức lượng cho \(\Delta ABD\) vuông tại A và có đường cao AK ta có:
\(AK=\frac{SA.AH}{\sqrt{S{{A}^{2}}+A{{H}^{2}}}}=\frac{a.\frac{a\sqrt{6}}{3}}{\sqrt{{{a}^{2}}+{{\left( \frac{a\sqrt{6}}{3} \right)}^{2}}}}=\frac{\frac{{{a}^{2}}\sqrt{6}}{3}}{\frac{\sqrt{15}}{3}}=\frac{a\sqrt{10}}{5}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x-2y+2z-1=0\). Khoảng cách từ điểm \(A\left( 1;-2;1 \right)\) đến mặt phẳng \(\left( P \right)\) bằng
Cho hàm số \(y=f\left( x \right)\) và \(y=g\left( x \right)\) liên tục trên đoạn \(\left[ 1;5 \right]\) sao cho \(\int\limits_{1}^{5}{f\left( x \right)\text{d}x}=2\) và \(\int\limits_{1}^{5}{g\left( x \right)\text{d}x}=-4\). Giá trị của \(\int\limits_{1}^{5}{\left[ g\left( x \right)-f\left( x \right) \right]\text{d}x}\) là
Cho số phức z có \(\left| z \right|=2\) thì số phức \(\text{w}=z+3i\) có modun nhỏ nhất và lớn nhất lần lượt là:
Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của \(d\) là
Tìm số giá trị nguyên thuộc đoạn \(\left[ -2019\,;2019 \right]\) của tham số \(m\) để đồ thị hàm số \(y=\frac{\sqrt{x-3}}{{{x}^{2}}+x-m}\) có đúng hai đường tiệm cận.
Trong hình dưới đây, điểm \(B\) là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúng?
.jpg.png)
Họ nguyên hàm của hàm số \(f(x)=\frac{x+3}{{{x}^{2}}+3\text{x}+2}\) là:
Tìm các giá trị của tham số m để hàm số \(y=\frac{1}{2}\ln \left( {{x}^{2}}+4 \right)-mx+3\) nghịch biến trên khoảng \(\left( -\infty ;+\infty \right)\).
Cho hàm số bậc bốn \(y=f\left( x \right)\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(3f\left( x \right)+1=0\) là
.jpg.png)
Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) thỏa mãn \(f'\left( x \right)-xf\left( x \right)=0,f\left( x \right)>0,\forall x\in \mathbb{R}\) và \(f\left( 0 \right)=1.\) Giá trị của \(f\left( 1 \right)\) bằng?
Cho hai số phức z1 = 1+i và z2 = 2-3i. Tính mô đun của số phức z1 + z2
Cho hình thang ABCD vuông tại A và D, AD=CD=a, AB=2a. Quay hình thang ABCD quanh cạnh AB, thể tích khối tròn xoay thu được là :
Cho không gian Oxyz, cho điểm \(A\left( 0;1;2 \right)\) và hai đường thẳng \({{d}_{1}}:\left\{ \begin{align} & x=1+t \\ & y=-1-2t \\ & z=2+t \\ \end{align} \right.\), \({{d}_{2}}:\frac{x}{2}=\frac{y-1}{1}=\frac{z+1}{-1}\). Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua A và song song với hai đường thẳng \({{d}_{1}},{{d}_{2}}\).
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên.
.png)
Hàm số đã cho đồng biến trên khoảng nào dưới đây?


