Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (minh họa như hình vẽ bên). Khoảng cách từ C đến mặt phẳng (SBD) bằng
.png)
A. \(\frac{{\sqrt {21} a}}{{14}}\)
B. \(\frac{{\sqrt {21} a}}{{28}}\)
C. \(\frac{{\sqrt 2 a}}{2}\)
D. \(\frac{{\sqrt {21} a}}{7}\)
Lời giải của giáo viên
ToanVN.com
Đáp án D
* Gọi \(O=AC\cap BD\) và G là trọng tâm tam giác ABD, I là trung điểm của AB ta có
\(SI\bot \left( ABCD \right)\) và \(\frac{d\left( D;\left( SAC \right) \right)}{d\left( I;\left( SAC \right) \right)}=\frac{DG}{IG}=2\Rightarrow d\left( D;\left( SAC \right) \right)=2.d\left( I;\left( SAC \right) \right)\)
* Gọi K là trung điểm của AO, H là hình chiếu của I lên SK ta có \(IK\bot AC;\text{ }IH\bot \left( SAC \right)\)
\(\Rightarrow d\left( D;\left( SAC \right) \right)=2.d\left( I;\left( SAC \right) \right)=2.IH\)
* Xét tam giác SIK vuông tại I ta có: \(SI=\frac{a\sqrt{3}}{2};\text{ }IK=\frac{BO}{2}=\frac{a\sqrt{2}}{4}\)
\(\frac{1}{I{{H}^{2}}}=\frac{1}{S{{I}^{2}}}+\frac{1}{I{{K}^{2}}}=\frac{4}{3{{a}^{2}}}+\frac{16}{2{{a}^{2}}}=\frac{28}{3{{a}^{2}}}\Rightarrow IH=\frac{a\sqrt{3}}{2\sqrt{7}}\)
\(\Rightarrow d\left( D;\left( SAC \right) \right)=2.d\left( I;\left( SAC \right) \right)=2.IH=\frac{a\sqrt{21}}{7}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)=x{{\left( x-1 \right)}^{2}}, \forall x\in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

Số nghiệm thực của phương trình $2f\left( x \right)-3=0$ là
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Biết \(f\left( 6 \right)=1\) và \(\int\limits_{0}^{1}{xf\left( 6x \right)\operatorname{d}x}=1\), khi đó \(\int\limits_{0}^{6}{{{x}^{2}}{f}'\left( x \right)\operatorname{d}x}\) bằng
Cho hàm số \(f\left( x \right)\), bảng xét dấu của \({f}'\left( x \right)\) như sau:

Hàm số \(y=f\left( 3-2x \right)\) đồng biến trên khoảng nào dưới đây?
Cho số phức z thỏa \((2+i)z-4(\overline{z}-i)=-8+19i\). Môđun của z bằng
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+2}{1}=\frac{y-1}{-3}=\frac{z-3}{2}\). Vectơ nào dưới đây là một vectơ chỉ phương của d?
Gọi \({{z}_{1}},{{z}_{2}}\) là hai nghiệm phức của phương trình \({{z}^{2}}-4z+5=0\). Gái trị của \(z_{1}^{2}+z_{2}^{2}\) bằng
Họ tất cả các nguyên hàm của hàm số \(f\left( x \right)=2x+3\) là
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
Cho hai hàm số \(y=\frac{x-1}{x}+\frac{x}{x+1}+\frac{x+1}{x+2}+\frac{x+2}{x+3}\) và \(y=\left| x+2 \right|-x-m\) (m là tham số thực) có đồ thị lần lượt là \(\left( {{C}_{1}} \right)\) và \(\left( {{C}_{2}} \right)\). Tập hợp tất cả các giá trị của m để \(\left( {{C}_{1}} \right)\) và \(\left( {{C}_{2}} \right)\) cắt nhau tại đúng 4 điểm phân biệt là
Cho phương trình \(\left( 2\log _{3}^{2}x-{{\log }_{3}}x-1 \right)\sqrt{{{5}^{x}}-m}=0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Trong không gian Oxyz, hình chiếu vuông góc của điểm \(M\left( 2;1;-1 \right)\) trên trục Oy có tọa độ là
Cho đường thẳng y=3x và parabol \(y=2{{x}^{2}}+a\) ( a là tham số thực dương). Gọi \({{S}_{1}}\) và \({{S}_{2}}\) lần lượt là diện tích của 2 hình phẳng được gạch chéo trong hình vẽ bên. Khi \({{S}_{1}}={{S}_{2}}\) thì a thuộc khoảng nào dưới đây?



