Lời giải của giáo viên
ToanVN.com
Đáp án A
Điều kiện: \(\left\{ \begin{align} & x>0 \\ & x\ge {{\log }_{5}}m \\ \end{align} \right.\)
Phương trình \(\Leftrightarrow \left[ \begin{align} & {{\log }_{3}}x=1 \\ & {{\log }_{3}}x=-\frac{1}{2} \\ & x={{\log }_{5}}m \\ \end{align} \right.\)
\(\Leftrightarrow \left[ \begin{align} & x=3 \\ & x=\frac{1}{\sqrt{3}} \\ & x={{\log }_{5}}m \\ \end{align} \right.\)
TH1: Nếu m=1 thì \(x={{\log }_{5}}m=0\) (loại) nên phương trình đã cho có 2 nghiệm phân biệt.
TH2: Nếu m>1 thì phương trình đã cho có đúng hai nghiệm phân biệt khi và chỉ khi
\(\frac{1}{\sqrt{3}}\le {{\log }_{5}}m<3\Leftrightarrow {{5}^{\frac{1}{\sqrt{3}}}}\le m<125\). Do \(m\in \mathbb{Z}\Rightarrow m\in \left\{ 3;4;5;...;124 \right\}\)
Vậy có tất cả 123 giá trị nguyên dương của m thoả mãn yêu cầu bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)=x{{\left( x-1 \right)}^{2}}, \forall x\in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

Số nghiệm thực của phương trình $2f\left( x \right)-3=0$ là
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Biết \(f\left( 6 \right)=1\) và \(\int\limits_{0}^{1}{xf\left( 6x \right)\operatorname{d}x}=1\), khi đó \(\int\limits_{0}^{6}{{{x}^{2}}{f}'\left( x \right)\operatorname{d}x}\) bằng
Cho hàm số \(f\left( x \right)\), bảng xét dấu của \({f}'\left( x \right)\) như sau:

Hàm số \(y=f\left( 3-2x \right)\) đồng biến trên khoảng nào dưới đây?
Cho số phức z thỏa \((2+i)z-4(\overline{z}-i)=-8+19i\). Môđun của z bằng
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+2}{1}=\frac{y-1}{-3}=\frac{z-3}{2}\). Vectơ nào dưới đây là một vectơ chỉ phương của d?
Gọi \({{z}_{1}},{{z}_{2}}\) là hai nghiệm phức của phương trình \({{z}^{2}}-4z+5=0\). Gái trị của \(z_{1}^{2}+z_{2}^{2}\) bằng
Họ tất cả các nguyên hàm của hàm số \(f\left( x \right)=2x+3\) là
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
Trong không gian Oxyz, hình chiếu vuông góc của điểm \(M\left( 2;1;-1 \right)\) trên trục Oy có tọa độ là
Cho hai hàm số \(y=\frac{x-1}{x}+\frac{x}{x+1}+\frac{x+1}{x+2}+\frac{x+2}{x+3}\) và \(y=\left| x+2 \right|-x-m\) (m là tham số thực) có đồ thị lần lượt là \(\left( {{C}_{1}} \right)\) và \(\left( {{C}_{2}} \right)\). Tập hợp tất cả các giá trị của m để \(\left( {{C}_{1}} \right)\) và \(\left( {{C}_{2}} \right)\) cắt nhau tại đúng 4 điểm phân biệt là
Cho đường thẳng y=3x và parabol \(y=2{{x}^{2}}+a\) ( a là tham số thực dương). Gọi \({{S}_{1}}\) và \({{S}_{2}}\) lần lượt là diện tích của 2 hình phẳng được gạch chéo trong hình vẽ bên. Khi \({{S}_{1}}={{S}_{2}}\) thì a thuộc khoảng nào dưới đây?

Với a là số thực dương tùy ý, \({{\log }_{2}}{{a}^{3}}\) bằng


