Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB=a, \(BC=a\sqrt{3}\). Cạnh bên SA vuông góc với đáy và đường thẳng SC tạo với mặt phẳng (SAB) một góc \({{30}^{{}^\circ }}\). Thể tích khối chóp S.ABCD bằng
.png)
A. \(\sqrt 3 {a^3}\)
B. \(\frac{{2{a^3}}}{3}\)
C. \(\frac{{\sqrt 3 {a^3}}}{3}\)
D. \(\frac{{2\sqrt 6 {a^3}}}{3}\)
Lời giải của giáo viên
ToanVN.com
Vì \(SA\bot (ABCD)\) nên \(SA\bot BC\), do \(BC\bot AB\) nên \(BC\bot (SAB)\).
Ta có SB là hình chiếu vuông góc của SC lên mặt phẳng (SAB), do đó góc giữa đường thẳng SC và mặt phẳng (SAB) là góc \(\widehat{CSB}={{30}^{{}^\circ }}\).
Trong tam giác SBC, ta có \(SB=BC.\cot {{30}^{{}^\circ }}=a\sqrt{3}.\sqrt{3}=3a\).
Trong tam giác SAB, ta có \(SA=\sqrt{S{{B}^{2}}-A{{B}^{2}}}=2a\sqrt{2}\).
Vậy \({{V}_{S.ABCD}}=\frac{1}{3}SA.AB.BC=\frac{1}{3}2a\sqrt{2}.a.a\sqrt{3}=\frac{2{{a}^{3}}\sqrt{6}}{3}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} 2x - 2{\rm{ }}\,\,{\rm{ }}\,\,khi{\rm{ }}x \le 0\\ {x^2}{\rm{ + 4}}x - 2\,\,\,\,{\rm{ }}khi{\rm{ }}x > 0 \end{array} \right.\). Tích phân \(I = \int\limits_0^\pi {\sin 2x.f\left( {{\rm{cos}}x} \right){\rm{d}}x} \) bằng
Có bao nhiêu số nguyên \(m\in \left( -20;20 \right)\) để phương trình \({{7}^{x}}+m=6{{\log }_{7}}\left( 6x-m \right)\) có nghiệm thực
Cho hàm số \(y=g\left( x \right)\) có bảng biến thiên như sau:
Hàm số \(y=g\left( x \right)\) nghịch biến trên khoảng nào dưới đây?
Đồ thị của hàm số \(y=-{{x}^{4}}-3{{x}^{2}}+1\) cắt trục tung tại điểm có tung độ bằng
Trong không gian Oxyz, cho hai điểm \(M\left( 2;4;1 \right),\,N\left( -2;2;-3 \right)\). Phương trình mặt cầu đường kính MN là
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Cạnh bên SA vuông góc với đáy, \(AB=a,\,AD=a\sqrt{3},\,SA=2a\sqrt{2}\) (tham khảo hình bên). Góc giữa đường thẳng SC và mặt phằng \(\left( SAB \right)\) bằng
.png)
Nếu \(\int\limits_{-1}^{1}{f(x)dx=7}\) và \(\int\limits_{-1}^{2}{f(t)dt=9}\) thì \(\int\limits_{1}^{2}{f(x)dx}\) bằng
Trong không gian Oxyz cho hai điểm \(A\left( 1;0;0 \right),B\left( 3;4;-4 \right)\). Xét khối trụ \(\left( T \right)\) có trục là đường thẳng AB và có hai đường tròn đáy nằm trên mặt cầu đường kính AB. Khi \(\left( T \right)\) có thể tích lớn nhất, hai đáy của \(\left( T \right)\) nằm trên hai mặt phẳng song song lần lượt có phương trình là \(x+by+cz+{{d}_{1}}=0\) và \(x+by+cz+{{d}_{2}}=0\). Khi đó giá trị của biểu thức \(b+c+{{d}_{1}}+{{d}_{2}}\) thuộc khoảng nào sau đây?
Cho hai số phức \(z=2-i;\text{w}=3+2i\). Số phức \(z+\text{w}\) bằng
Đường cong trong hình vẽ bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi đó là hàm số nào?
Trong không gian Oxyz, cho điểm \(E\left( 2;1;3 \right)\), mặt phẳng \(\left( P \right):2x+2y-z-3=0\) và mặt cầu \(\left( S \right):{{\left( x-3 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-5 \right)}^{2}}=36.\) Gọi \(\Delta \) là đường thẳng đi qua E, nằm trong mặt phẳng \(\left( P \right)\) và cắt \(\left( S \right)\) tại hai điểm có khoảng cách nhỏ nhất. Phương trình của \(\Delta \) là
Cho hàm số \(f\left( x \right)\), đồ thị của hàm số \(y=f'\left( x \right)\) là đường cong trong hình bên. Giá trị lớn nhất của hàm số \(g\left( x \right)=2f\left( x \right)-{{\left( x+1 \right)}^{2}}\) trên đoạn \(\left[ -3;3 \right]\) bằng
Phương trình \({\log _2}\left( {x + 1} \right) = 4\) có nghiệm là
Tập nghiệm của bất phương trình \({{2}^{{{x}^{2}}+2x}}\le 8\) là


