Lời giải của giáo viên
ToanVN.com
.jpg)
Gọi I, J lần lượt là trung điểm cuả AC, SB, H là điểm chiếu của S lên IB
Có SA = SC. Suy ra \(\Delta SAC\) cân tại S, suy ra \(SI \bot AC\)
Có SA = SC, BA = BC, BC chung. Suy ra \(\Delta SAB = \Delta SCB.\) Suy ra JA = JC.
Suy ra \(\Delta JAC\) cân tại J, I là trung điểm AC. Suy ra \(IJ \bot AC\)
Có \(AC \bot SI;AC \bot IJ.\) Suy ra \(AC \bot \left( {SIB} \right)\)
Suy ra \(\left( {ABC} \right) \bot \left( {SIB} \right),\) Có \(\left( {ABC} \right) \cap \left( {SIB} \right) = IB,SH \bot IB.\) Suy ra \(SH \bot \left( {ABC} \right)\)
Suy ra BH là hình chiếu của SB lên (ABC)
Suy ra \(\left( {SB,\left( {ABC} \right)} \right) = \widehat {SBI}\)
Có \(SI = \sqrt {S{A^2} - A{I^2}} = \frac{{a\sqrt 5 }}{2},IB = \sqrt {A{B^2} - A{I^2}} = \frac{a}{2},SB = a\sqrt 2 \)
Có \(\cos \widehat {SBI} = \frac{{S{B^2} + I{B^2} - S{I^2}}}{{2.SB.IB}} = \frac{{\sqrt 2 }}{2}.\) Suy ra \(\widehat {SBI} = {45^0}.\) Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Số mặt phẳng đối xứng của hình chóp đều S.ABCD là :
Cho tập \(A = \left\{ {0;1;2;3;4;5;7;9} \right\}.\) hỏi có bao nhiêu số tự nhiên 8 chữ số khác nhau lập từ A, biết các chữ số chãn không đứng cạnh nhau.
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình vẽ:
Số nghiệm của phương trình \(f(x)=-1\) là?
Cho tứ giác ABCD. Có bao nhiêu vector (khác \(\overrightarrow 0 \)) có điểm đầu và điểm cuối là các đỉnh của tứ giác.
Cho hàm số \(y = \frac{{ - x + 2}}{{x - 1}}\) có đồ thị (C) và điểm \(A\left( {a;1} \right).\) Biết \(a = \frac{m}{n}\) (với mọi \(m,n \in N\) và \(\frac{m}{n}\) tối giản) là giá
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, cạnh bên bằng 3a. Tính thể tích của khối chóp đã cho?
Cho hàm số \(y=f(x)\) liên tục trên R có đồ thị như hình vẽ:
.jpg)
Có bao nhiêu giá trị của n để phương trình \(f\left( {16{{\cos }^2}x + 6\sin 2x - 8} \right) = f\left( {n\left( {n + 1} \right)} \right)\) có nghiệm \(x \in R?\)
Số tập con của tập \(M = \left\{ {1;2;3} \right\}\) là:
\(\lim \left( {\frac{1}{{{n^2}}} + \frac{2}{{{n^2}}} + \frac{3}{{{n^2}}} + ... + \frac{n}{{{n^2}}}} \right)\) bằng
Cho hàm số \(y=f(x)\) có bảng biến thiên
Số tiệm cận đứng của đồ thị hàm số \(y = \frac{{2018}}{{f(x)}}\) là:
Nếu \(\sin x + \cos x = \frac{1}{2}\) thì \(sin 2x\)bằng
Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x) = x{({x^2} + 2x)^3}({x^2} - \sqrt 2 ),\forall x \in R.\) Số điểm cực trị của hàm số là:
Có tất cả bao nhiêu giá trị nguyên của tham số m (biết \(m \ge - 2019\) ) để hệ phương trình sau có nghiệm thực?
\(\left\{ \begin{array}{l}
{x^2} + x - \sqrt[3]{y} = 1 - 2m\\
2{x^3} - {x^2}\sqrt[3]{y} - 2{x^2} + x\sqrt[3]{y} = m
\end{array} \right.\)
Cho hàm số \(y = \frac{1}{x}.\) Đạo hàm cấp hai của hàm số là:
Trên trục tọa độ Oxy, cho hình vuông ABCD. Điểm M thuộc cạnh CD sao cho \(\overrightarrow {MC} = 2\overrightarrow {DM} ,N(0;2019)\) là trung điểm của cạnh BC, K là giao điểm của hi đường thẳng AM và BD. Biết đường thẳng AM có phương trình \(x - 10y + 2018 = 0.\) Khoảng cách từ gốc tọa độ O đến đường thẳng NK bằng:


