Câu hỏi Đáp án 3 năm trước 60

Cho hình chóp S.ABC có đáy là tam giác cân tại A, \(AB = AC = a,\,\,BAC = {120^0}\). Tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính thể tích V của khối chóp S.ABC.

A. \(V = {a^3}.\)

B. \(V = \frac{{{a^3}}}{2}.\)

C. \(V = 2{a^3}.\)

D. \(V = \frac{{{a^3}}}{8}.\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

Gọi H là trung điểm của AB.

\(\Delta SAB\) đều và nằm trong mặt phẳng vuông góc với \(\left( {ABC} \right) \Rightarrow SH \bot \left( {ABC} \right)\).

 \(\Delta SAB\) đều cạnh \(a \Rightarrow SH = \frac{{a\sqrt 3 }}{2}.\) 

\(\begin{array}{l}
{S_{ABC}} = \frac{1}{2}AB.AC.\sin \angle A = \frac{1}{2}{a^2}.\frac{{\sqrt 3 }}{2} = \frac{{{a^2}\sqrt 3 }}{4}.\\
 \Rightarrow {V_{SABC}} = \frac{1}{3}{S_{ABC}}.SH = \frac{1}{3}.\frac{{a\sqrt 3 }}{2}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}}}{8}.
\end{array}\) 

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho khối lăng trụ ABC.A'B'C' có thể tích bằng V. Tính thể tích khối đa diện ABCB'C'.   

Xem lời giải » 3 năm trước 75
Câu 2: Trắc nghiệm

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \(A,AB = 1cm,AC = \sqrt 3 cm\). Tam giác SAB, SAC lần lượt vuông tại BC. Khối cầu ngoại tiếp hình chóp S.ABC có thể tích bằng \(\frac{{5\sqrt 5 }}{6}c{m^3}\). Tính khoảng cách từ C tới (SAB).  

Xem lời giải » 3 năm trước 72
Câu 3: Trắc nghiệm

Có bao nhiêu số tự nhiên có 4 chữ số được viết từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9 sao cho số đó chia hết cho 15?

Xem lời giải » 3 năm trước 70
Câu 4: Trắc nghiệm

Tìm số đường tiệm cận của đồ thị hàm số \(y = \frac{{x - 1}}{{4\sqrt {3x + 1}  - 3x - 5}}\).

Xem lời giải » 3 năm trước 69
Câu 5: Trắc nghiệm

Cho \(\int {2x{{\left( {3x - 2} \right)}^6}dx = A{{\left( {3x - 2} \right)}^8} + B{{\left( {3x - 2} \right)}^7} + C} \) với \(A,B,C \in R\). Tính giá trị của biểu thức 12A + 7B.  

Xem lời giải » 3 năm trước 69
Câu 6: Trắc nghiệm

Cho hàm số \(f(x)\) liên tục trên đoạn [0;10] và \(\int_0^{10} {f\left( x \right)dx = 7} \) và \(\int_2^6 {f\left( x \right)dx = 3} \). Tính \(P = \int_0^2 {f\left( x \right)dx + \int_6^{10} {f\left( x \right)dx} } .\)  

Xem lời giải » 3 năm trước 68
Câu 7: Trắc nghiệm

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A B. Biết \(SA \bot \left( {ABCD} \right),\) \(AB = BC = a,\,\,AD = 2a,\,\,SA = a\sqrt 2 \). Gọi E là trung điểm của AD. Tính bán kính mặt cầu đi qua các điểm A, B, C, D, E.

Xem lời giải » 3 năm trước 68
Câu 8: Trắc nghiệm

Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0;2019) để \(\lim \sqrt {\frac{{{9^n} + {3^{n + 1}}}}{{{5^n} + {9^{n + a}}}}}  \le \frac{1}{{2187}}\)?

Xem lời giải » 3 năm trước 67
Câu 9: Trắc nghiệm

Cho hàm số \(y=f(x)\) xác định và liên tục trên R, có bảng biến thiên như sau:

Mệnh đề nào sau đây là đúng?

Xem lời giải » 3 năm trước 67
Câu 10: Trắc nghiệm

Có bao nhiêu số hạng trong khai triển nhị thức \({\left( {2x - 3} \right)^{2018}}\) thành đa thức

Xem lời giải » 3 năm trước 66
Câu 11: Trắc nghiệm

Biết F(x) là nguyên hàm của hàm số \(1f\left( x \right) = \frac{{x - \cos x}}{{{x^2}}}\). Hỏi đồ thị của hàm số \(y=F(x)\) có bao nhiêu điểm cực trị? 

Xem lời giải » 3 năm trước 66
Câu 12: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:

Hàm số đạt cực đại tại điểm nào trong các điểm sau đây?

Xem lời giải » 3 năm trước 66
Câu 13: Trắc nghiệm

Một người gửi tiết kiệm số tiền 80 000 000 đồng với lãi suất là 6,9%/năm. Biết rằng tiền lãi hàng năm được nhập vào tiền gốc, hỏi sau đúng 5 năm người đó có rút được cả gốc và lãi số tiền gần với con số nào dưới đây?

Xem lời giải » 3 năm trước 66
Câu 14: Trắc nghiệm

Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{x}{{x + 3}}\) trên đoạn [- 2;3] bằng  

Xem lời giải » 3 năm trước 66
Câu 15: Trắc nghiệm

Tìm nguyên hàm của hàm số \(y = {x^2} - 3x + \frac{1}{x}.\) 

Xem lời giải » 3 năm trước 65

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »