Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. Cạnh AC = a, \(BC = a\sqrt 5 \). Mặt phẳng (SAB) vuông góc mặt phẳng đáy và tam giác SAB đều. Gọi K điểm thuộc cạnh SC sao cho SC = 3SK. Tính khoảng cách \(d\) giữa hai đường thẳng AC và BK theo a.
A. \(d = \frac{{2\sqrt {21} a}}{{17}}.\)
B. \(d = \frac{{\sqrt {21} a}}{{17}}.\)
C. \(d = \frac{{2\sqrt {21} a}}{7}.\)
D. \(d = \frac{{2\sqrt 2 a}}{{17}}.\)
Lời giải của giáo viên
ToanVN.com
Gọi H là trung điểm của AB \( \Rightarrow SH \bot AB\) (do tam giác SAB đều)
Do \((SAB) \bot (ABC) \Rightarrow SH \bot (ABC)\)
Do tam giác ABC vuông tại A nên AB=2a\( \Rightarrow SH = a\sqrt 3 .\)
\({S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.2a.a = {a^2}\)
Kẻ KM song song với AC cắt SA tại M. Khi đó AC//KM suy ra AC//(BKM)
Do đó d(AC,BK)=d(AC,(BKM))
Ta có \(AC \bot AB;AC \bot SH\) nên \(AC \bot (SAB)\)
Kẻ \(AI \bot BM,\) do KM//AC nên \(AI \bot KM\) suy ra \(AI \bot \left( {BKM} \right)\)
.png)
Suy ra d(AC,BK)=d(AC,(BKM))=d(A,(BKM))=AI
Ta có: \(\frac{{MA}}{{SA}} = \frac{{KC}}{{SC}} = \frac{2}{3} \Rightarrow {S_{AMB}} = \frac{2}{3}{S_{SAB}} = \frac{2}{3}{(2a)^2}\frac{{\sqrt 3 }}{4} = \frac{2}{3}{a^2}\sqrt 3 .\)
Ta lại có \(BM = \sqrt {A{B^2} + A{M^2} - AB.AM.\cos {{60}^0}} = \frac{{2a\sqrt 7 }}{3}\)
Do đó \(AI = \frac{{2{S_{ABM}}}}{{BM}} = \frac{{2\sqrt {21} a}}{7}.\) Vậy \(d(AC,BK) = \frac{{2\sqrt {21} a}}{7}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}m\frac{{{x^2} - 4}}{{{x^2} - 3x + 2}} + {n^2},\,\,\,\,khi\,\,x > 2\\nx - {m^2} - 5,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x \le 2\end{array} \right.\) Tìm \(m,\,\,n\) để hàm số có giới hạn tại \(x = 2.\)
Chọn giá trị \(f(0)\) để các hàm số \(f(x) = \frac{{\sqrt {2x + 1} - 1}}{{x(x + 1)}}\)liên tục tại điểm \(x = 0\).
Cho hình chóp \(S.ABCD\), tứ giác \(ABCD\) đáy là hình thang vuông tại \(A\) và \(B\), \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Biết \(AB = 2CD = 2AD\). Mệnh đề nào sau đây sai?
Cho hình chóp tứ giác đều có tất cả các cạnh bằng nhau, đường cao của một mặt bên là \(a\sqrt 3 .\) Thể tích V của khối chóp đó là bao nhiêu?
Cho hàm số \(y = {x^2} + 5x + 4\) có đồ thị \(\left( C \right)\). Tìm tiếp tuyến của \(\left( C \right)\) tại các giao điểm của \(\left( C \right)\) với trục \(Ox\).
Cho tứ diện \(ABCD\). \(G\) là trọng tâm tam giác \(BCD\). Tìm giao tuyến của hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {GAB} \right).\)
Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng nào?
Tổng tất cả các nghiệm của phương trình \(\frac{{\left( {2\cos x - 1} \right)\left( {\sin 2x - \cos x} \right)}}{{\sin x - 1}} = 0\) trên \(\left[ {0;\,\frac{\pi }{2}} \right]\) là \(T\) bằng bao nhiêu?
Trong măt phẳng \(Oxy\) cho điểm \(M\left( { - 2;4} \right)\). Phép vị tự tâm \(O\) tỉ số \(k = - 2\) biến điểm \(M\) thành điểm nào trong các điểm sau?
Nếu \(P(A).P(B) = P(A \cap B)\) thì \(A,B\) là 2 biến cố như thế nào?
Tính giới hạn \(\mathop {\lim }\limits_{x \to 0} \left( {{x^2}\sin \frac{{{x^2} + 2}}{{{x^2}}}} \right)\)ta có kết quả là bao nhiêu?
Phương trình \(\sin \left( {3x + \frac{\pi }{3}} \right) = - \frac{{\sqrt 3 }}{2}\) có bao nhiêu nghiệm thuộc khoảng \(\left( {0;\frac{\pi }{2}} \right)\)?
.jpg)
.png)


