Cho hình chóp S.ABC có các cạnh \(SA = BC = 3;\,\,SB = AC = 4;\,\,SC = AB = 2\sqrt 5 \) . Tính thể tích khối chóp S.ABC.
A. \(\frac{{\sqrt {390} }}{{12}}.\)
B. \(\frac{{\sqrt {390} }}{{6}}.\)
C. \(\frac{{\sqrt {390} }}{{8}}.\)
D. \(\frac{{\sqrt {390} }}{{4}}.\)
Lời giải của giáo viên
ToanVN.com
.png)
Đặt \(SA = SB = a,SB = AC = b,SC = AB = c\).
Dựng hình chóp S.A'B'C' sao cho A, B, C lần lượt là trung điểm của B'C', C'A', A'B'.
Dễ thấy \(\Delta ABC\) đồng dạng với \(\Delta A'B'C'\) theo tỉ số \(\frac{1}{2} \Rightarrow \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta A'B'C'}}}} = \frac{1}{4} \Rightarrow {V_{S.ABC}} = \frac{1}{4}{V_{S.A'B'C'}}\).
Ta có AB, BC, CA là các đường trung bình của tam giác A'B'C'
\( \Rightarrow A'B' = 2AB = 2c;\,B'C' = 2BC = 2a;\,A'C' = 2AC = 2b\).
\( \Rightarrow \Delta SA'B',\Delta SB'C',\Delta SC'A'\) là các tam giác vuông tại S (Tam giác
có trung tuyến ứng với một cạnh bằng nửa cạnh ấy)
\( \Rightarrow SA',SB',SC'\) đôi một vuông góc
\({V_{S.A'B'C'}} = \frac{1}{6}SA'.SB'.SC' \Rightarrow {V_{S.ABC}} = \frac{1}{{24}}SA'.SB'.SC'\)
Áp dụng định lí Pytago ta có:
\(\begin{array}{l}
\left\{ \begin{array}{l}
SA{'^2} + SB{'^2} = 4{c^2}\\
SB{'^2} + SC{'^2} = 4{a^2}\\
SA{'^2} + SC{'^2} = 4{b^2}
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
SA{'^2} = 2\left( {{b^2} + {c^2} - {a^2}} \right)\\
SB{'^2} = 2\left( {{a^2} + {c^2} - {b^2}} \right)\\
SC{'^2} = 2\left( {{a^2} + {b^2} - {c^2}} \right)
\end{array} \right.\\
\Rightarrow {V_{S.ABC}} = \frac{1}{{24}}.\sqrt {8\left( {{b^2} + {c^2} - {a^2}} \right)\left( {{a^2} + {c^2} - {b^2}} \right)\left( {{a^2} + {b^2} - {c^2}} \right)} \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{1}{{6\sqrt 2 }}\sqrt {\left( {{b^2} + {c^2} - {a^2}} \right)\left( {{a^2} + {c^2} - {b^2}} \right)\left( {{a^2} + {b^2} - {c^2}} \right)}
\end{array}\)
Thay \(a = 3,b = 4,c = 2\sqrt 5 \Rightarrow {V_{S.ABC}} = \frac{{\sqrt {390} }}{4}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối lăng trụ ABC.A'B'C' có thể tích bằng V. Tính thể tích khối đa diện ABCB'C'.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \(A,AB = 1cm,AC = \sqrt 3 cm\). Tam giác SAB, SAC lần lượt vuông tại B và C. Khối cầu ngoại tiếp hình chóp S.ABC có thể tích bằng \(\frac{{5\sqrt 5 }}{6}c{m^3}\). Tính khoảng cách từ C tới (SAB).
Có bao nhiêu số tự nhiên có 4 chữ số được viết từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9 sao cho số đó chia hết cho 15?
Tìm số đường tiệm cận của đồ thị hàm số \(y = \frac{{x - 1}}{{4\sqrt {3x + 1} - 3x - 5}}\).
Cho \(\int {2x{{\left( {3x - 2} \right)}^6}dx = A{{\left( {3x - 2} \right)}^8} + B{{\left( {3x - 2} \right)}^7} + C} \) với \(A,B,C \in R\). Tính giá trị của biểu thức 12A + 7B.
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết \(SA \bot \left( {ABCD} \right),\) \(AB = BC = a,\,\,AD = 2a,\,\,SA = a\sqrt 2 \). Gọi E là trung điểm của AD. Tính bán kính mặt cầu đi qua các điểm A, B, C, D, E.
Cho hàm số \(f(x)\) liên tục trên đoạn [0;10] và \(\int_0^{10} {f\left( x \right)dx = 7} \) và \(\int_2^6 {f\left( x \right)dx = 3} \). Tính \(P = \int_0^2 {f\left( x \right)dx + \int_6^{10} {f\left( x \right)dx} } .\)
Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0;2019) để \(\lim \sqrt {\frac{{{9^n} + {3^{n + 1}}}}{{{5^n} + {9^{n + a}}}}} \le \frac{1}{{2187}}\)?
Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{x}{{x + 3}}\) trên đoạn [- 2;3] bằng
Cho hàm số \(y=f(x)\) xác định và liên tục trên R, có bảng biến thiên như sau:
Mệnh đề nào sau đây là đúng?
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:
Hàm số đạt cực đại tại điểm nào trong các điểm sau đây?
Một người gửi tiết kiệm số tiền 80 000 000 đồng với lãi suất là 6,9%/năm. Biết rằng tiền lãi hàng năm được nhập vào tiền gốc, hỏi sau đúng 5 năm người đó có rút được cả gốc và lãi số tiền gần với con số nào dưới đây?
Biết F(x) là nguyên hàm của hàm số \(1f\left( x \right) = \frac{{x - \cos x}}{{{x^2}}}\). Hỏi đồ thị của hàm số \(y=F(x)\) có bao nhiêu điểm cực trị?
Có bao nhiêu số hạng trong khai triển nhị thức \({\left( {2x - 3} \right)^{2018}}\) thành đa thức
Cho hàm số \(y=f(x)\) xác định, liên tục trên R và có bảng biến thiên như sau
Khẳng định nào sau đây là đúng?


