Cho hàm số \(y = (x + 3)({x^2} - 1)\) có đồ thị \(\left( C \right)\). Mệnh đề nào dưới đây đúng?
A. \((C)\) cắt trục hoành tại ba điểm phân biệt.
B. \((C)\) cắt trục hoành tại hai điểm phân biệt.
C. \((C)\) cắt trục hoành tại một điểm.
D. \((C)\) không cắt trục hoành.
Lời giải của giáo viên
ToanVN.com
Phương trình hoành độ giao điểm của \(\left( C \right)\) và trục \(Ox\)là
\((x + 3)({x^2} - 1) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = - 1\\x = 1\end{array} \right.\)
Vậy \((C)\) cắt trục hoành tại ba điểm phân biệt.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}m\frac{{{x^2} - 4}}{{{x^2} - 3x + 2}} + {n^2},\,\,\,\,khi\,\,x > 2\\nx - {m^2} - 5,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x \le 2\end{array} \right.\) Tìm \(m,\,\,n\) để hàm số có giới hạn tại \(x = 2.\)
Chọn giá trị \(f(0)\) để các hàm số \(f(x) = \frac{{\sqrt {2x + 1} - 1}}{{x(x + 1)}}\)liên tục tại điểm \(x = 0\).
Cho hàm số \(y = {x^2} + 5x + 4\) có đồ thị \(\left( C \right)\). Tìm tiếp tuyến của \(\left( C \right)\) tại các giao điểm của \(\left( C \right)\) với trục \(Ox\).
Cho hình chóp \(S.ABCD\), tứ giác \(ABCD\) đáy là hình thang vuông tại \(A\) và \(B\), \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Biết \(AB = 2CD = 2AD\). Mệnh đề nào sau đây sai?
Cho hình chóp tứ giác đều có tất cả các cạnh bằng nhau, đường cao của một mặt bên là \(a\sqrt 3 .\) Thể tích V của khối chóp đó là bao nhiêu?
Cho tứ diện \(ABCD\). \(G\) là trọng tâm tam giác \(BCD\). Tìm giao tuyến của hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {GAB} \right).\)
Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng nào?
Tổng tất cả các nghiệm của phương trình \(\frac{{\left( {2\cos x - 1} \right)\left( {\sin 2x - \cos x} \right)}}{{\sin x - 1}} = 0\) trên \(\left[ {0;\,\frac{\pi }{2}} \right]\) là \(T\) bằng bao nhiêu?
Trong măt phẳng \(Oxy\) cho điểm \(M\left( { - 2;4} \right)\). Phép vị tự tâm \(O\) tỉ số \(k = - 2\) biến điểm \(M\) thành điểm nào trong các điểm sau?
Tính giới hạn \(\mathop {\lim }\limits_{x \to 0} \left( {{x^2}\sin \frac{{{x^2} + 2}}{{{x^2}}}} \right)\)ta có kết quả là bao nhiêu?
Nếu \(P(A).P(B) = P(A \cap B)\) thì \(A,B\) là 2 biến cố như thế nào?
Với giá trị nào của \(m\) thì phương trình \(\left( {m + 2} \right)\sin 2x + m{\cos ^2}x = m - 2 + m{\sin ^2}x\) có nghiệm?
.jpg)
.png)


