Cho hàm số \(y = \frac{{x + 2}}{{2x + 3}}\) có đồ thị \((C)\). Đường thẳng \(d\) có phương trình \(y = ax + b\) là tiếp tuyến của \((C)\), biết \(d\) cắt trục hoành tại \(A\)và cắt trục tung tại \(B\)sao cho tam giác \(OAB\)cân tại \(O\), với \(O\) là gốc tọa độ. Tính \(a + b\).
A. \( - 1.\)
B. \( - 2.\)
C. \(0.\)
D. \( - 3.\)
Lời giải của giáo viên
ToanVN.com
Do \(\Delta OAB\) cân tại \(O\). Mà \(\angle AOB = 90^\circ \Rightarrow \Delta OAB\) vuông cân tại O
\( \Rightarrow \) Đường thẳng \(d\) taoh với trục \(Ox\) góc \({45^0}\) hoặc góc \({135^0}\)
\( \Rightarrow \) Đường thẳng \(d\) có hệ số góc bằng \(1\) hoặc \( - 1 \Leftrightarrow \left[ \begin{array}{l}a = 1\\a = - 1\end{array} \right..\)
Ta có: \(y = \frac{{x + 2}}{{2x + 3}} \Rightarrow y' = \frac{{ - 1}}{{{{\left( {2x + 3} \right)}^2}}} < 0,\,\,\forall x \ne - \frac{3}{2}\,\, \Rightarrow \) Hệ số góc của đường thẳng d chỉ có thể là \( - 1 \Rightarrow a = - 1\)
Gọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm \( \Rightarrow \frac{{ - 1}}{{{{\left( {2{x_0} + 3} \right)}^2}}} = - 1 \Leftrightarrow {\left( {2{x_0} + 3} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}{x_0} = - 1\\{x_0} = - 2\end{array} \right.\)
+) \({x_0} = - 1 \Rightarrow {y_0} = 1 \Rightarrow \left( d \right):y = - 1\left( {x + 1} \right) + 1 \Leftrightarrow y = - x\): Loại, do \(y = - x\) cắt 2 trục tọa độ tại điểm duy nhất là \(O\left( {0;0} \right)\)
+) \({x_0} = - 2 \Rightarrow {y_0} = 0 \Rightarrow \left( d \right):y = - 1\left( {x + 2} \right) + 0 \Leftrightarrow y = - x - 2 \Rightarrow b = - 2\,\, \Rightarrow a + b = - 1 - 2 = - 3\).
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số \(m\) sao cho phương trình \(f\left( x \right) = m\) có đúng hai nghiệm.
Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e\) \(\left( {a \ne 0} \right)\). Biết rằng hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right)\) và hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ dưới. Khi đó mệnh đề nào sau đây sai?
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({\log _{\sqrt 2 }}(x - 1) = {\log _2}(mx - 8)\) có hai nghiệm thực phân biệt?
Mặt cầu có bán kính \(a\) thì có diện tích xung quanh bằng
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có bảng biến thiên như hình dưới đây
Tập hợp \(S\) tất cả các giá trị của m đề phương trình \(f\left( x \right) = m\) có đúng ba nghiệm thực là
Cho các dạng đồ thị (I), (II), (III) như hình dưới đây:
Đồ thị hàm số \(y = {x^3} + b{x^2} - x + d{\rm{ }}\left( {b,d \in \mathbb{R}} \right)\) có thể là dạng nào trong các dạng trên?
Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào ?
Cho tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc, \(AB = 4cm,AC = 5cm,AD = 3cm.\) Thể tích khối tứ diện \(ABCD\) bằng:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\)thuộc đoạn \(\left[ { - 2018;2019} \right]\) để hàm số \(y = m{x^4} + \left( {m + 1} \right){x^2} + 1\)có đúng một điểm cực đại?
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới đây. Mệnh đề nào sau đây đúng?
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Mệnh đề nào sau đây đúng?
Một hình trụ có hai đáy là hai hình tròn \(\left( {O;r} \right)\) và \(\left( {O';r} \right).\) Khoảng cách giữa hai đáy là \(OO' = r\sqrt 3 .\) Một hình nón có đỉnh là \(O\) và có đáy là hình tròn \(\left( {O';r} \right).\) Gọi \({S_1}\) là diện tích xung quanh của hình trụ và \({S_2}\) là diện tích xung quanh của hình nón. Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}.\)
Cho hình chóp tứ giác đều có tất cả các cạnh bằng \(2a.\) Bán kính mặt cầu ngoại tiếp hình chóp đã cho bằng \(\frac{{a\sqrt 6 }}{2}.\)
Tìm tập xác định của hàm số \(y = \frac{1}{{1 - \ln x}}\).
Biết phương trình \({\log _5}\frac{{2\sqrt x + 1}}{x} = 2{\log _3}\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)\) có một nghiệm dạng \(x = a + b\sqrt 2 \) trong đó \(a,b\) là các số nguyên. Tính \(2a + b\).


