Câu hỏi Đáp án 3 năm trước 55

Cho hàm số \(f(x), \text { có } f\left(\frac{\pi}{2}\right)=0 \text { và } f^{\prime}(x)=\sin x \cdot \cos ^{2} 2 x, \forall x \in \mathbb{R}\). Khi đó \(\int_{0}^{\frac{\pi}{2}} f(x) d x\) bằng:

A. \(-\frac{121}{225}\)

Đáp án chính xác ✅

B. \(\frac{2}{232}\)

C. \(-\frac{232}{345}\)

D. \(\frac{92}{232}\)

Lời giải của giáo viên

verified ToanVN.com

\(\text { Ta có } I=f(x)=\int f^{\prime}(x) d x=\int \sin x \cdot \cos ^{2} 2 x d x=\int \sin x\left(2 \cos ^{2} x-1\right)^{2} d x\)

\(\text { Đặt } t=\cos x \Rightarrow d t=-\sin x d x\)

\(\begin{array}{l} \text { Suy ra } I=-\int\left(2 t^{2}-1\right)^{2} d t=-\int\left(4 t^{4}-4 t^{2}+1\right) d t=-\frac{4}{5} t^{5}+\frac{4}{3} t^{3}-t+c \\ \text { Hay } I=-\frac{4}{5} \cos ^{5} x+\frac{4}{3} \cos ^{3} x-\cos x+C \Rightarrow f(x)=-\frac{4}{5} \cos ^{5} x+\frac{4}{3} \cos ^{3} x-\cos x+C \end{array}\)

\(\text { Mà } f\left(\frac{\pi}{2}\right)=0 \Rightarrow C=0 . \text { Vậy } f(x)=-\frac{4}{5} \cos ^{5} x+\frac{4}{3} \cos ^{3} x-\cos x\)

Tích phân \(J=\int_{0}^{\frac{\pi}{2}} f(x) d x=\int_{0}^{\frac{\pi}{2}}\left(-\frac{4}{5} \cos ^{5} x+\frac{4}{3} \cos ^{3} x-\cos x\right) d x\)

\(\begin{array}{l} =\int_{0}^{\frac{\pi}{2}} \cos x\left(-\frac{4}{5} \cos ^{4} x+\frac{4}{3} \cos ^{2} x-1\right) d x \\ =\int_{0}^{\frac{\pi}{2}} \cos x\left(-\frac{4}{5}\left(1-\sin ^{2} x\right)^{2}+\frac{4}{3}\left(1-\sin ^{2} x\right)-1\right) d x \end{array}\)

\(\begin{array}{l} \text { Đặt } t=\sin x \Rightarrow d t=\cos x d x \\ \text { Đổi cận } x=0 \Rightarrow t=0 ; x=\frac{\pi}{2} \Rightarrow t=1 \end{array}\)

Khi đó \(J=\int_{0}^{1}\left[-\frac{4}{5}\left(1-t^{2}\right)^{2}+\frac{4}{3}\left(1-t^{2}\right)-1\right] d t=-\frac{121}{225}\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình nón (N ) có đường kính đáy bằng 4a , đường sinh bằng 5a . Tính diện tích xung quanh của hình nón (N ).

Xem lời giải » 3 năm trước 73
Câu 2: Trắc nghiệm

Trong không gian Oxyz , Cho đường thẳng \(\Delta:\left\{\begin{array}{l} x=2+t \\ y=-1-t \\ z=1 \end{array}\right.\).  Véc tơ nào dưới đây là một véc tơ chỉ phương của \(\Delta\)?

Xem lời giải » 3 năm trước 69
Câu 3: Trắc nghiệm

Cho hàm số y=f(x)  liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ:

Có bao nhiêu giá trị nguyên của m để phương trình \(f( \sqrt{1+x}-\sqrt{3-x})=f( \sqrt{|m|+1})\) có nghiệm?

Xem lời giải » 3 năm trước 68
Câu 4: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(S A \perp(A B C D) \text { và } S A=a \sqrt{3}\)  . Khi đó thể tích của hình chóp S.ABCD  bằng:

Xem lời giải » 3 năm trước 67
Câu 5: Trắc nghiệm

Cho hai số thực dương x y ; thỏa mãn \(\log _{3} x+x y=\log _{3}(8-y)+x(8-x)\). Giá trị nhỏ nhất của biểu thức \(P=x^{3}-\left(x^{2}+y^{2}\right)-16 x\) bằng?

Xem lời giải » 3 năm trước 66
Câu 6: Trắc nghiệm

Với a, b là hai số thực dương khác 1, ta có \(\log _{b^{2}} a\)  bằng

Xem lời giải » 3 năm trước 66
Câu 7: Trắc nghiệm

Số tiệm cận của đồ thị hàm số \(y=\frac{2 x-3}{x+1}\)là:

Xem lời giải » 3 năm trước 65
Câu 8: Trắc nghiệm

Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với mặt phẳng (ABCD) và \(SC=a\sqrt3\) (minh họa như hình bên). Góc giữa mặt phẳng (SBC) và và mặt phẳng (ABCD) bằng

Xem lời giải » 3 năm trước 64
Câu 9: Trắc nghiệm

Cho cấp số nhân với \(u_1=3\) và \(u_2 = 9\) . Công bội của cấp số nhân đã cho là:

Xem lời giải » 3 năm trước 63
Câu 10: Trắc nghiệm

Trong không gian Oxyz, cho điểm \( M(1 ; 2 ; 3) ; N(-1 ; 1 ; 2)\) Phương trình mặt phẳng trung trực của MN là:

Xem lời giải » 3 năm trước 63
Câu 11: Trắc nghiệm

Diện tích S của hình phẳng giới hạn bởi các đường \(y=4 x^{2}+x, y=-1, x=0 \text { và } x=1\) được tính bởi công thức nào sau đây?

Xem lời giải » 3 năm trước 62
Câu 12: Trắc nghiệm

Xét các số thực a, b thỏa mãn: \(\log _{8}\left(4^{a} . 8^{b}\right)=\log _{4} 16\). Mệnh đề nào dưới đây là đúng?

Xem lời giải » 3 năm trước 62
Câu 13: Trắc nghiệm

Giá trị nhỏ nhất của hàm số \(f(x)=x^{4}-6 x^{2}-9\) trên đoạn [-1;4] bằng:

Xem lời giải » 3 năm trước 62
Câu 14: Trắc nghiệm

Xét tích phân \(\int_{1}^{e} \frac{1}{x} \ln x d x . \text { Nếu đặt } \ln x=t \text { thì } \int_{1}^{e} \frac{1}{x} \ln x d x\) bằng:

Xem lời giải » 3 năm trước 62
Câu 15: Trắc nghiệm

Trong không gian Oxyz  cho điểm \(A(-2 ; 0 ; 1) ; B(0 ; 2 ; 3)\) và mặt phẳng \((P): 2 x+y+z-1=0\). Đường thẳng d qua trung điểm I của AB và vuông góc với mặt phẳng (P) có phương trình là:

Xem lời giải » 3 năm trước 62

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »