Câu hỏi Đáp án 3 năm trước 62

Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\) thỏa mãn c>2019, a+b+c-2018<0. Số điểm cực trị của hàm số \(y=\left| f(x)-2019 \right|\) là

A. S = 3

B. S = 5

Đáp án chính xác ✅

C. S = 2

D. S = 1

Lời giải của giáo viên

verified ToanVN.com

Xét hàm số \(g(x)=f(x)-2019={{x}^{3}}+a{{x}^{2}}+bx+c-2019\).

Hàm số \(g\left( x \right)\) liên tục trên \(\mathbb{R}\).

\(\left\{ \begin{align} & c>2019 \\ & a+b+c-2018<0 \\ \end{align} \right.\)\(\Leftrightarrow \left\{ \begin{matrix} g(0)>0 \\ g(1)<0 \\ \end{matrix} \right.\)

\(\Rightarrow \) phương trình g(x)=0 có ít nhất 1 nghiệm thuộc \(\left( 0;1 \right).\)

\(\Rightarrow \) Đồ thị hàm số y=g(x) có ít nhất một giao điểm với trục hoành có hoành độ nằm trong khoảng (0;1). (1)

Vì \(\left\{ \begin{matrix} \underset{x\to -\infty }{\mathop{\lim }}\,g(x)=-\infty \\ g(0)>0 \\ \end{matrix} \right.\Rightarrow \) phương trình g(x)=0 có ít nhất 1 nghiệm thuộc \((-\infty ;0).\)

\(\Rightarrow \) Đồ thị hàm số y=g(x) có ít nhất một giao điểm với trục hoành có hoành độ nằm trong khoảng \((-\infty ;0).\) (2)

Vì \(\left\{ \begin{matrix} \underset{x\to +\infty }{\mathop{\lim }}\,g(x)=+\infty \\ g(1)<0 \\ \end{matrix} \right.\Rightarrow \) phương trình g(x)=0 có ít nhất 1 nghiệm thuộc \((1;+\infty ).\)

\(\Rightarrow \) Đồ thị hàm số y=g(x) có ít nhất một giao điểm với trục hoành có hoành độ nằm trong khoảng \((1;+\infty ).\) (3)

Và hàm số \(g\left( x \right)\) là hàm số bậc 3

Nên từ (1), (2), (3) đồ thị hàm số \(g\left( x \right)\) có dạng

Do đó đồ thị hàm số \(y=\left| f(x)-2019 \right|\) có dạng

Vậy hàm số \(y=\left| f(x)-2019 \right|\) có 5 điểm cực trị

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x-2y+2z-1=0\). Khoảng cách từ điểm \(A\left( 1;-2;1 \right)\) đến mặt phẳng \(\left( P \right)\) bằng

Xem lời giải » 3 năm trước 70
Câu 2: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) và \(y=g\left( x \right)\) liên tục trên đoạn \(\left[ 1;5 \right]\) sao cho \(\int\limits_{1}^{5}{f\left( x \right)\text{d}x}=2\) và \(\int\limits_{1}^{5}{g\left( x \right)\text{d}x}=-4\). Giá trị của \(\int\limits_{1}^{5}{\left[ g\left( x \right)-f\left( x \right) \right]\text{d}x}\) là

Xem lời giải » 3 năm trước 66
Câu 3: Trắc nghiệm

Cho số phức z có \(\left| z \right|=2\) thì số phức \(\text{w}=z+3i\) có modun nhỏ nhất và lớn nhất lần lượt là:

Xem lời giải » 3 năm trước 65
Câu 4: Trắc nghiệm

Tìm các giá trị của tham số m để hàm số \(y=\frac{1}{2}\ln \left( {{x}^{2}}+4 \right)-mx+3\) nghịch biến trên khoảng \(\left( -\infty ;+\infty  \right)\).

Xem lời giải » 3 năm trước 65
Câu 5: Trắc nghiệm

Tìm số giá trị nguyên thuộc đoạn \(\left[ -2019\,;2019 \right]\) của tham số \(m\) để đồ thị hàm số \(y=\frac{\sqrt{x-3}}{{{x}^{2}}+x-m}\) có đúng hai đường tiệm cận.

Xem lời giải » 3 năm trước 65
Câu 6: Trắc nghiệm

Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của \(d\) là

Xem lời giải » 3 năm trước 65
Câu 7: Trắc nghiệm

Thể tích khối tứ diện đều có cạnh bằng 2

Xem lời giải » 3 năm trước 64
Câu 8: Trắc nghiệm

Trong hình dưới đây, điểm \(B\) là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúng?

Xem lời giải » 3 năm trước 64
Câu 9: Trắc nghiệm

Họ nguyên hàm của hàm số \(f(x)=\frac{x+3}{{{x}^{2}}+3\text{x}+2}\) là:

Xem lời giải » 3 năm trước 64
Câu 10: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) thỏa mãn \(f'\left( x \right)-xf\left( x \right)=0,f\left( x \right)>0,\forall x\in \mathbb{R}\) và \(f\left( 0 \right)=1.\) Giá trị của \(f\left( 1 \right)\) bằng?

Xem lời giải » 3 năm trước 63
Câu 11: Trắc nghiệm

Cho hàm số bậc bốn \(y=f\left( x \right)\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(3f\left( x \right)+1=0\) là

Xem lời giải » 3 năm trước 63
Câu 12: Trắc nghiệm

Cho hình thang ABCD vuông tại A và D, AD=CD=a, AB=2a. Quay hình thang ABCD quanh cạnh AB, thể tích khối tròn xoay thu được là :

Xem lời giải » 3 năm trước 62
Câu 13: Trắc nghiệm

Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = x\left( {2017 + \sqrt {2019 – {x^2}} } \right)\) trên tập xác định của nó. Tính M – m.

Xem lời giải » 3 năm trước 62
Câu 14: Trắc nghiệm

Cho hai số phức z1 = 1+i và z2 = 2-3i. Tính mô đun của số phức z1 + z2

Xem lời giải » 3 năm trước 62
Câu 15: Trắc nghiệm

Cho hình lăng trụ \(ABC.{A}'{B}'{C}'\) và M, N là hai điểm lần lượt trên cạnh CA, CB sao cho MN song song với AB và \(\frac{CM}{CA}=k\). Mặt phẳng \(\left( MN{B}'{A}' \right)\) chia khối lăng trụ \(ABC.{A}'{B}'{C}'\) thành hai phần có thể tích \({{V}_{1}}\) (phần chứa điểm C) và \({{V}_{2}}\) sao cho \(\frac{{{V}_{1}}}{{{V}_{2}}}=2\). Khi đó giá trị của k là

Xem lời giải » 3 năm trước 62

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »