Cho hàm số \(y={{x}^{4}}-2m{{x}^{2}}+m,\) có đồ thị \(\left( C \right)\) với \(m\) là tham số thực. Gọi \(A\) là điểm thuộc đồ thị \(\left( C \right)\) có hoành độ bằng 1. Tìm \(m\) để tiếp tuyến \(\Delta \) với đồ thị \(\left( C \right)\) tại \(A\) cắt đường tròn \(\left( \gamma \right){{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=4\) tạo thành một dây cung có độ dài nhỏ nhất.
A. \(-\frac{15}{16}.\)
B. \(\frac{15}{16}.\)
C. \(-\frac{17}{16}.\)
D. \(\frac{17}{16}.\)
Lời giải của giáo viên
ToanVN.com
\(y'=4{{x}^{3}}-4mx,y'\left( 1 \right)=4-4m,y\left( 1 \right)=1-m.\) Ta có điểm \(A\left( 1;1-m \right).\)
Phương trình tiếp tuyến của đồ thị \(\left( C \right)\) tại điểm \(A\left( 1;1-m \right)\) là
\(y=y'\left( 1 \right)\left( x-1 \right)+1-m\Rightarrow y=\left( 4-4m \right)\left( x-1 \right)+1-m\Rightarrow y=\left( 4-4m \right)x+3m-3\) suy ra phương trình tiếp tuyến \(\Delta \) là \(\left( 4-4m \right)x-y+3m-3=0.\)
.png)
\(MN=2MH=2\sqrt{I{{M}^{2}}-I{{H}^{2}}}=2\sqrt{4-I{{H}^{2}}}\).
Ta có \(MN\) nhỏ nhất khi \(IH\) lớn nhất. Ta có \(IH=d\left( I,\Delta \right)=\frac{\left| m \right|}{\sqrt{{{\left( 4-4m \right)}^{2}}+1}}.\)
\(IH\) lớn nhất khi \(I{{H}^{2}}\) lớn nhất hay \(\frac{{{m}^{2}}}{16{{m}^{2}}-32m+17}\) lớn nhất.
Xét hàm \(f\left( m \right)=\frac{{{m}^{2}}}{16{{m}^{2}}-32m+17}\) suy ra \(f'\left( m \right)=\frac{-32{{m}^{2}}+34m}{{{\left( 16{{m}^{2}}-32m+17 \right)}^{2}}}.\)
.png)
Từ bảng ta có \(IH\) lớn nhất khi \(m=\frac{17}{16}.\)
Vậy dây cung \(MN\) nhỏ nhất khi \(m=\frac{17}{16}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Đường cong trong hình bên là đồ thị của hàm số nào trong bốn hàm số dưới đây?
.jpg.png)
Cho hình trụ có bán kính đáy bằng \(a\) và chiều cao gấp 2 lần đường kính đáy của hình trụ. Tính diện tích xung quanh của hình trụ.
Cho hình lăng trụ \(ABC.A'B'C'\) có thể tích bằng \(V.\) Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AB,A'C'.P\) là điểm trên các cạnh \(BB'\) sao cho \(PB=2PB'.\) Thể tích khối tứ diện \(CMNP\) bằng:
Có bao nhiêu giá trị nguyên của tham số \(m\) trong \(\left[ -2020;2020 \right]\) để phương trình \(\log \left( mx \right)=2\log \left( x+1 \right)\) có nghiệm duy nhất?
Số nghiệm của phương trình \({{\log }_{2020}}x+{{\log }_{2021}}x=0\) là
Trên giá sách có 6 quyển sách toán khác nhau, 7 quyển sách văn khác nhau và 8 quyển sách Tiếng anh khác. Hỏi có bao nhiêu cách lấy 2 quyển thuộc 2 môn khác nhau?
Cho tứ diện đều \(ABCD,M\) là trung điểm của \(BC. \) Khi đó cosin của góc giữa hai đường thẳng nào sau đây có giá trị bằng \(\frac{\sqrt{3}}{6}?\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) hình vuông cạnh \(a.\) Tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy, bán kính mặt cầu ngoại tiếp hình chóp là:
Đạo hàm của hàm số \(y=\frac{\ln \left( {{x}^{2}}+1 \right)}{x}\) tại điểm \(x=1\) là \(y'\left( 1 \right)=a\ln 2+b,\left( a,b\in \mathbb{Z} \right).\) Tính \(a-b.\)
Cho bất phương trình \({{\log }_{\frac{1}{3}}}\left( {{x}^{2}}-2x+6 \right)\le -2.\) Mệnh đề nào sau đây đúng?
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác \(ABC\) vuông tại \(B;AB=2a,BC=a,AA'=2a\sqrt{3}.\) Thể tích khối lăng trụ \(ABC.A'B'C'\) là
Cho hình chóp \(S.ABC\) có \(AB=AC=4,BC=2,SA=4\sqrt{3};\angle SAB=\angle SAC={{30}^{0}}.\) Gọi \({{G}_{1}},{{G}_{2}},{{G}_{3}}\) lần lượt là trọng tâm của các tam giác \(\Delta SBC;\Delta SCA;\Delta SAB\) và \(T\) đối xứng \(S\) qua mặt phẳng \(\left( ABC \right).\) Thể tích của khối chóp \(T.{{G}_{1}}{{G}_{2}}{{G}_{3}}\) bằng \(\frac{a}{b}\) với \(a,b\in \mathbb{N}\) và \(\frac{a}{b}\) tối giản. Tính giá trị \(P=2a-b.\)
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số \(g\left( x \right)=f\left( 4x-{{x}^{2}} \right)+\frac{1}{3}{{x}^{3}}-3{{x}^{2}}+8x-\frac{5}{3}\) trên đoạn \(\left[ 1;3 \right].\)
.png)
Cho mặt cầu \(S\left( O;r \right)\), mặt phẳng \(\left( P \right)\) cách tâm \(O\) một khoảng bằng \(\frac{r}{2}\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn. Hãy tính theo \(r\) chu vi của đường tròn là giao tuyến của mặt phẳng \(\left( P \right)\) và mặt cầu \(\left( S \right).\)


