Cho hàm số \(y=\frac{x-2}{x+1}\) có đồ thị \(\left( C \right).\) Gọi \(I\) là giao điểm của hai tiệm cận của \(\left( C \right).\) Xét tam giác đều \(ABI\) có hai đỉnh \(A,\ B\) thuộc \(\left( C \right),\) đoạn thẳng \(AB\) có độ dài bằng:
A. \(2\sqrt{3}\)
B. \(2\sqrt{2}\)
C. \(\sqrt{3}\)
D. \(\sqrt{6}\)
Lời giải của giáo viên
ToanVN.com
Ta có: \(x=-1\) là TCĐ của đồ thị hàm số, \(y=1\) là TCN của đồ thị hàm số.
\(\Rightarrow I\left( -1;\ 1 \right)\) là giao điểm của hai đường tiệm cận của đồ thị hàm số.
\(\Rightarrow IH:\ \ y=-x.\)Dựa vào đô thị hàm số ta có \(\Delta IAB\) là tam giác đều \(\Rightarrow IH\) vừa là đường cao đồng thời là đường phân giác của \(\angle AIB\Rightarrow IH\) cũng là đường phân giác của góc phần tư thứ hai.
Ta có: \(AB\bot IH\Rightarrow AB:\ \ y=x+m\Leftrightarrow x-y+m=0.\)
\(\Rightarrow d\left( I;\ AB \right)=\frac{\left| -1-1+m \right|}{\sqrt{2}}=\frac{\left| m-2 \right|}{\sqrt{2}}.\)
Gọi độ dài cạnh của tam giác đều \(IAB\) là \(a\Rightarrow IH=d\left( I;\ AB \right)=\frac{a\sqrt{3}}{2}.\)
\(\begin{align} & \Rightarrow \frac{a\sqrt{3}}{2}=\frac{\left| m-2 \right|}{\sqrt{2}}\Leftrightarrow a\sqrt{3}=\sqrt{2}\left| m-2 \right| \\ & \Leftrightarrow 3{{a}^{2}}=2{{\left( m-2 \right)}^{2}} \\ & \Leftrightarrow {{a}^{2}}=\frac{2{{\left( m-2 \right)}^{2}}}{3}.\ \ \ \ \ \left( 1 \right) \\\end{align}\)
Hoành độ các giao điểm \(A,\ B\) là nghiệm của phương trình hoành độ giao điểm:
\(\frac{x-2}{x+1}=x+m\Leftrightarrow {{x}^{2}}+mx+m+2=0\)
Theo hệ thức Vi-ét ta có: \(\left\{ \begin{align} & {{x}_{1}}+{{x}_{2}}=-m \\ & {{x}_{1}}{{x}_{2}}=m+2 \\\end{align} \right..\)
\(\begin{align} & \Rightarrow A\left( {{x}_{1}};\ {{x}_{1}}+m \right);\ \ B\left( {{x}_{2}};\ {{x}_{2}}+m \right). \\ & \Rightarrow AB=a\Leftrightarrow A{{B}^{2}}={{a}^{2}} \\ & \Leftrightarrow {{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{x}_{1}}+m-{{x}_{2}}-m \right)}^{2}}={{a}^{2}} \\ & \Leftrightarrow 2{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}={{a}^{2}} \\ & \Leftrightarrow 2{{\left( {{x}_{1}}+{{x}_{2}} \right)}^{2}}-8{{x}_{1}}{{x}_{2}}={{a}^{2}} \\ & \Leftrightarrow 2{{m}^{2}}-8\left( m+2 \right)=\frac{2{{\left( m-2 \right)}^{2}}}{3} \\ & \Leftrightarrow 3\left( {{m}^{2}}-4\left( m+2 \right) \right)={{\left( m-2 \right)}^{2}} \\ & \Leftrightarrow 3{{m}^{2}}-12m-24={{m}^{2}}-4m+4 \\ & \Leftrightarrow 2{{m}^{2}}-8m=28 \\ & \Leftrightarrow {{m}^{2}}-4m=14. \\ & \Rightarrow AB=\sqrt{2{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}}=\sqrt{2{{m}^{2}}-8\left( m+2 \right)}=\sqrt{2\left( {{m}^{2}}-4m-8 \right)}=\sqrt{2.\left( 14-8 \right)}=\sqrt{12}=2\sqrt{3}. \\\end{align}\)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian \(Oxyz,\) cho hai điểm \(A\left( 5;-4;\ 2 \right)\) và \(B\left( 1;\ 2;\ 4 \right).\) Mặt phẳng đi qua \(A\) và vuông góc với đường thẳng \(AB\) có phương trình là:
Trong không gian \(Oxyz,\) mặt cầu \(\left( S \right):\ {{\left( x-5 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z+2 \right)}^{2}}=3\) có bán kính bằng:
Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y={{x}^{8}}+\left( m-3 \right){{x}^{5}}-\left( {{m}^{2}}-9 \right){{x}^{4}}+1\) đạt cực tiểu tại \(x=0?\)
Cho phương trình \({{2}^{x}}+m=\log2\left( x-m \right)\) với \(m\) là tham số. Có bao nhiêu giá trị nguyên của \(m\in \left( -18;\ 18 \right)\) để phương trình đã cho có nghiệm?
Cho \(\int\limits_{1}^{e}{\left( 2+x\ln x \right)dx=a{{e}^{2}}+be+c}\) với \(a,\ b,\ c\) là các số hữu tỉ. Mệnh đề nào dưới đây đúng?
Cho hình chóp \(SABC\) có đáy là tam giác vuông cân tại \(C,\ BC=a,\ SA\) vuông góc với mặt phẳng đáy và \(SA=a.\) Khoảng cách từ \(A\) đến mặt phẳng \(\left( SBC \right)\) bằng:
Cho \(a>0,\ b>0\) thỏa mãn \({{\log }_{2a+2b+1}}\left( 4{{a}^{2}}+{{b}^{2}}+1 \right)+{{\log }_{4ab+1}}\left( 2a+2b+1 \right)=2.\) Giá trị của \(a+2b\) bằng:
Xét các số phức \(z\) thỏa mãn \(\left( \overline{z}-2i \right)\left( z+2 \right)\) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức \(z\) là một đường tròn có bán kính bằng:
Cho hình chóp \(SABC\) có \(SA\) vuông góc với mặt phẳng đáy, \(AB=a\) và \(SB=2a.\) Góc giữa đường thẳng \(SB\) và mặt phẳng đáy bằng:
Cho hình phẳng \(\left( H \right)\) giới hạn bởi các đường \(y={{x}^{2}}+2,\ y=0,\ x=1,\ x=2.\) Gọi \(V\) là thể tích của khối tròn xoay được tạo thành khi quay \(\left( H \right)\) xung quanh trục \(Ox.\) Mệnh đề nào dưới đây đúng?
Cho hai hàm số \(y=f\left( x \right),\ y=g\left( x \right).\) Hai hàm số \(y=f'\left( x \right)\) và \(y=g'\left( x \right)\) có đồ thị hàm như hình vẽ bên, trong đó đường cong đậm hơn là đồ thị của hàm số \(y=g'\left( x \right).\) Hàm số \(h\left( x \right)=f\left( x+6 \right)-g\left( 2x+\frac{5}{2} \right)\) đồng biến trên khoảng nào dưới đây?
Cho hàm số \(y=a{{x}^{4}}+b{{x}^{2}}+c\ \left( a,\ b,\ c\in R \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là:
Từ một hộp chứa 10 quả cầu màu đỏ và 5 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng:


