Lời giải của giáo viên
ToanVN.com
Phương trình tiếp tuyến của đồ thị hàm số y = f (x) tại điểm M(x0; y0) là: \(y=f'\left( {{x}_{0}} \right).\text{ }\left( x-{{x}_{0}} \right)+{{y}_{0}}\)
Do \(\Delta OAB\) cân tại O. Mà \(\angle AOB={{90}^{0}}\Rightarrow \Delta OAB\) vuông cân tại O
⇒ Đường thẳng d tạo với trục Ox góc 450 hoặc góc 1350
⇒ Đường thẳng d có hệ số góc băng 1 hoặc -1 \(\Leftrightarrow \left[ \begin{matrix} a=1\,\,\, \\ a=-1 \\ \end{matrix} \right.\)
Ta có: \(y=\frac{x+2}{2x+3}\Rightarrow y'=\frac{-1}{{{\left( 2x+3 \right)}^{2}}}<0,\forall x\ne -\frac{3}{2}\Rightarrow \) Hệ số góc của đường thẳng d chỉ có thể là \(-1\Rightarrow a=-1\)
Gọi \(M\left( {{x}_{0}};{{y}_{0}} \right)\) là tiếp điểm \(=>\frac{-1}{{{\left( 2{{x}_{0}}+3 \right)}^{2}}}=-1\Leftrightarrow {{\left( 2{{x}_{0}}+3 \right)}^{2}}=1\Leftrightarrow \left[ \begin{matrix} {{x}_{0}}=-1 \\ {{x}_{0}}=-2 \\ \end{matrix} \right.\)
+) \({{x}_{0}}=-1\Rightarrow {{y}_{0}}=1\Rightarrow \left( d \right):y=-1\left( x+1 \right)+1\Rightarrow y=-x\) : Loại, do y=-x cắt 2 trục tọa độ tại điểm duy nhất là O (0;0)
+) \({{x}_{0}}=-2\Rightarrow {{y}_{0}}=0\Rightarrow \left( d \right):y=-1\left( x+2 \right)+0\Leftrightarrow y=-x-2\Rightarrow b=-2\Rightarrow a+b=-1-2=-3\)
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số \(y=\frac{{{x}^{3}}}{3}-3{{x}^{2}}+5x-2\) nghịch biến trên khoảng nào dưới đây?
Cho hàm số \(y=a{{x}^{4}}+b{{x}^{2}}+c\left( a\ne 0 \right)\) có bảng biến thiên dưới đây:
Tính P = a -2b +3c
Cho hình chóp S.ABCD có đáy hình chữ nhật, SA vuông góc với mặt phẳng (ABCD). Tâm mặt cầu ngoại tiếp hình tròn S.ABCD là điểm I với
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \({{\log }_{\sqrt{2}}}\left( x-1 \right)={{\log }_{2}}\left( mx-8 \right)\) có hai nghiệm phân biệt?
Cho hình chóp S.ABC có SA =2a, SB = 3a, SC = 4a và ASB = BSC = 600, ASC = 900. Tính thể tích V của khối chóp S.ABC.
Tìm tập xác định của hàm số \(y = \frac{1}{{1 - \ln x}}\)
Cho hàm số \(f\left( x \right)=\frac{x-{{m}^{2}}}{x+8}\) với m là tham số thực. Giả sử \({{m}_{0}}\) là giá trị dương của tham số m để hàm số có giá trị nhỏ nhất trên đoạn [0;3] bằng -3. Giá trị \({{m}_{0}}\) thuộc khoảng nào trong các khoảng cho dưới đây?
Cho số dương a và \(m,n\in \mathbb{R}\). Mệnh đề nào sau đây đúng?
Hàm số nào sau đây nghịch biến trên mỗi khoảng xác định của nó?
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018;2019] để hàm số \(y=m{{x}^{4}}+\left( m+1 \right){{x}^{2}}+1\) có đúng một điểm cực đại?
Phương trình tiếp tuyến của đồ thị hàm số \(y=f\left( x \right){{\left( {{x}^{2}}-1 \right)}^{2}}\) tại điểm \(M\left( 2;9 \right)\) là
Giả sử \(m=-\frac{a}{b},a,b\in {{\mathbb{Z}}^{+}},\left( a,b \right)=1\) là giá trị thực của tham số m để đường thẳng d:y=-3x+m cắt đồ thị hàm số \(y=\frac{2x+1}{x-1}\left( C \right)\) tại hai điểm phân biệt A,B sao cho trọng tâm tam giác OAB thuộc đường thẳng \(\Delta :x-2y-2=0\) với O là gốc tọa độ. Tính a+2b.
Mặt cầu có bán kính a thì có diện tích xung quang bằng
Cho hàm số y = f (x) có bảng biến thiên như sau:
Mệnh đề nào sau đây đúng?


