Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị như sau:
.jpg.png)
Hỏi hàm số \(g\left( x \right)=2{{\left[ f\left( x \right) \right]}^{3}}-\frac{1}{2}{{\left[ f\left( x \right) \right]}^{2}}-12f\left( x \right)+3\) có bao nhiêu điểm cực trị?
A. 6
B. 8
C. 5
D. 7
Lời giải của giáo viên
ToanVN.com
Ta có \(g'\left( x \right)=6{{\left[ f\left( x \right) \right]}^{2}}f'\left( x \right)-\left[ f\left( x \right) \right]f'\left( x \right)-12f'\left( x \right)=f'\left( x \right)\left[ 6{{\left[ f\left( x \right) \right]}^{2}}-f\left( x \right)-12 \right]\)
\( \Rightarrow g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} f'\left( x \right) = 0\\ 6{\left[ {f\left( x \right)} \right]^2} - f\left( x \right) - 12 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} f'\left( x \right) = 0\\ f\left( x \right) = \frac{{ - 4}}{3}\\ f\left( x \right) = \frac{3}{2} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = 1\\ x = a < - 2\\ x = b \in \left( { - 2; - 1} \right)\\ x = c \in \left( { - 1;0} \right)\\ x = d \in \left( {1;2} \right) \end{array} \right.\)
Vậy hàm \(g\left( x \right)\) có 6 điểm cực trị
CÂU HỎI CÙNG CHỦ ĐỀ
Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số \(y=\frac{2x-1}{x-1}\text{ }?\)
Đồ thị hàm số \(y=\frac{x+1}{2x+4}\) có tiệm cận ngang là đường thẳng nào trong các đường thẳng sau ?
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
.png)
Hàm số\(y=f\left( {{x}^{2}}-2 \right)\) đồng biến trên khoảng nào dưới đây?
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\left[ -2;4 \right]\) và có bảng biến thiên như sau:
.png)
Gọi \(M,\,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=\left| f\left( x \right) \right|\) trên đoạn \(\left[ -2;4 \right]\). Tính \({{M}^{2}}-{{m}^{2}}\).
Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị hàm số \(y={f}'\left( {{x}^{3}}+x+2 \right)\) như hình vẽ sau:
.jpg.png)
Hỏi hàm số \(y=f\left( \left| x \right| \right)\) có bao nhiêu điểm cực trị?
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
.jpg.png)
Công thức tính thể tích V của khổi chóp có diện tích đáy B và chiều cao h là
Tìm giá trị nhỏ nhất của hàm số \(y={{x}^{3}}-6{{x}^{2}}+2\) trên đoạn \(\left[ -1;2 \right]\).
Một vật rơi tự do theo phương trình \(S\left( t \right)=\frac{1}{2}g{{t}^{2}}\) trong đó \(g\approx 9,8m/{{s}^{2}}\) là gia tốc trọng trường. Vận tốc tức thời tại thời điểm \(t=5s\) là:
Cho khối lăng trụ có diện tích đáy \(B=8\) và chiều cao \(h=6\) . Thể tích của khối lăng trụ đã cho bằng.
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như sau:
.png)
Giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ -1;1 \right]\) là:
Có bao nhiêu giá trị nguyên thuộc đoạn \(\left[ -10;10 \right]\) của \(m\) để giá trị lớn nhất của hàm số \(y=\frac{2x+m}{x+1}\) trên đoạn \(\left[ -4;-2 \right]\) không lớn hơn 1?
Đường cong sau là đồ thị của hàm số nào trong các hàm số đã cho dưới đây?
.jpg.png)
Hàm số \(y=\frac{3\sin x+5}{1-c\text{os}x}\) xác định khi :


