Câu hỏi Đáp án 3 năm trước 56

Cho đa giác lồi \({{A}_{1}}{{A}_{2}}...{{A}_{20}}.\) Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng

A. \(\frac{24}{57}.\)

B. \(\frac{40}{57}.\)

Đáp án chính xác ✅

C. \(\frac{27}{57}.\)

D. \(\frac{28}{57}.\)

Lời giải của giáo viên

verified ToanVN.com

Mỗi cách chọn ngẫu nhiên 3 đỉnh từ các đỉnh của đa giác sẽ tạo ra một tam giác và số tam giác là \(n\left( \Omega  \right)=C_{20}^{3}.\)

Gọi \(A\) là biến cố 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho.

Ta có mỗi tam giác thuộc \(\Omega \) thì có một trong 4 trường hợp sau:

TH1: Cả 3 cạnh của tam giác là các cạnh của đa giác, trường hợp này không có tam giác nào.

TH2: Chỉ có 2 cạnh của tam giác là cạnh của đa giác, khi đó đỉnh chung của 2 cạnh này sẽ là đỉnh của đa giác ban đầu, trường hợp này có 20 tam giác.

TH3: Chỉ có 1 cạnh của tam giác là cạnh của đa giác khi đó ứng với mỗi cạnh bất ký của đa giác thì sẽ có 16 tam giác thỏa mãn, vậy trường hợp này sẽ có 20x16 = 320 tam giác.

TH4: Không có cạnh nào của tam giác là cạnh của đa giác, khi đó tất cả các cạnh của tam giác đều là các đường chéo của đa giác.

Từ đây ta có \(n\left( A \right)=n\left( \Omega  \right)-20-320=800\) tam giác.

Vậy xác suất để chọn được 3 đỉnh tạo thành tam giác không có cạnh nào của đa giác đã cho là \(P\left( A \right)=\frac{n\left( A \right)}{n\left( \Omega  \right)}=\frac{40}{57}.\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Giới hạn \(\lim \left( 2{{n}^{2}}-1 \right)\) bằng  

Xem lời giải » 3 năm trước 75
Câu 2: Trắc nghiệm

Đường cong trong hình bên là đồ thị của hàm số nào trong bốn hàm số dưới đây?

Xem lời giải » 3 năm trước 74
Câu 3: Trắc nghiệm

Cho hình trụ có bán kính đáy bằng \(a\) và chiều cao gấp 2 lần đường kính đáy của hình trụ. Tính diện tích xung quanh của hình trụ.

Xem lời giải » 3 năm trước 73
Câu 4: Trắc nghiệm

Cho hình lăng trụ \(ABC.A'B'C'\) có thể tích bằng \(V.\) Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AB,A'C'.P\) là điểm trên các cạnh \(BB'\) sao cho \(PB=2PB'.\) Thể tích khối tứ diện \(CMNP\) bằng: 

Xem lời giải » 3 năm trước 72
Câu 5: Trắc nghiệm

Có bao nhiêu giá trị nguyên của tham số \(m\) trong \(\left[ -2020;2020 \right]\) để phương trình \(\log \left( mx \right)=2\log \left( x+1 \right)\) có nghiệm duy nhất?

Xem lời giải » 3 năm trước 71
Câu 6: Trắc nghiệm

Số nghiệm của phương trình \({{\log }_{2020}}x+{{\log }_{2021}}x=0\) là 

Xem lời giải » 3 năm trước 70
Câu 7: Trắc nghiệm

Trên giá sách có 6 quyển sách toán khác nhau, 7 quyển sách văn khác nhau và 8 quyển sách Tiếng anh khác. Hỏi có bao nhiêu cách lấy 2 quyển thuộc 2 môn khác nhau? 

Xem lời giải » 3 năm trước 70
Câu 8: Trắc nghiệm

Cho tứ diện đều \(ABCD,M\) là trung điểm của \(BC. \) Khi đó cosin của góc giữa hai đường thẳng nào sau đây có giá trị bằng \(\frac{\sqrt{3}}{6}?\) 

Xem lời giải » 3 năm trước 69
Câu 9: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) hình vuông cạnh \(a.\) Tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy, bán kính mặt cầu ngoại tiếp hình chóp là:

Xem lời giải » 3 năm trước 67
Câu 10: Trắc nghiệm

Đạo hàm của hàm số \(y=\frac{\ln \left( {{x}^{2}}+1 \right)}{x}\) tại điểm \(x=1\) là \(y'\left( 1 \right)=a\ln 2+b,\left( a,b\in \mathbb{Z} \right).\) Tính \(a-b.\) 

Xem lời giải » 3 năm trước 66
Câu 11: Trắc nghiệm

Cho bất phương trình \({{\log }_{\frac{1}{3}}}\left( {{x}^{2}}-2x+6 \right)\le -2.\) Mệnh đề nào sau đây đúng?

Xem lời giải » 3 năm trước 66
Câu 12: Trắc nghiệm

Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác \(ABC\) vuông tại \(B;AB=2a,BC=a,AA'=2a\sqrt{3}.\) Thể tích khối lăng trụ \(ABC.A'B'C'\) là

Xem lời giải » 3 năm trước 65
Câu 13: Trắc nghiệm

Cho hình chóp \(S.ABC\) có \(AB=AC=4,BC=2,SA=4\sqrt{3};\angle SAB=\angle SAC={{30}^{0}}.\) Gọi \({{G}_{1}},{{G}_{2}},{{G}_{3}}\) lần lượt là trọng tâm của các tam giác \(\Delta SBC;\Delta SCA;\Delta SAB\) và \(T\) đối xứng \(S\) qua mặt phẳng \(\left( ABC \right).\) Thể tích của khối chóp \(T.{{G}_{1}}{{G}_{2}}{{G}_{3}}\) bằng \(\frac{a}{b}\) với \(a,b\in \mathbb{N}\) và \(\frac{a}{b}\) tối giản. Tính giá trị \(P=2a-b.\)  

Xem lời giải » 3 năm trước 65
Câu 14: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số \(g\left( x \right)=f\left( 4x-{{x}^{2}} \right)+\frac{1}{3}{{x}^{3}}-3{{x}^{2}}+8x-\frac{5}{3}\) trên đoạn \(\left[ 1;3 \right].\)

Xem lời giải » 3 năm trước 65
Câu 15: Trắc nghiệm

Cho mặt cầu \(S\left( O;r \right)\), mặt phẳng \(\left( P \right)\) cách tâm \(O\) một khoảng bằng \(\frac{r}{2}\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn. Hãy tính theo \(r\) chu vi của đường tròn là giao tuyến của mặt phẳng \(\left( P \right)\) và mặt cầu \(\left( S \right).\) 

Xem lời giải » 3 năm trước 64

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »