Biết rằng \(\int\limits_1^a {\ln xdx = 1 + 2a,\left( {a > 1} \right)} \). Khẳng định nào dưới đây là khẳng định đúng?
A. \(a \in \left( {11;14} \right)\)
B. \(a \in \left( {18;21} \right)\)
C. \(a \in \left( {1;4} \right)\)
D. \(a \in \left( {6;9} \right)\)
Lời giải của giáo viên
ToanVN.com
Ta có: \(\int\limits_1^a {\ln xdx = 1 + 2a\left( {a > 1} \right)} \)
Đặt: \(\left\{ \begin{array}{l}
u = \ln x\\
dv = dx
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
du = \frac{1}{x}dx\\
v = x
\end{array} \right.\)
\(\begin{array}{l}
\Rightarrow I = x\ln x\left| \begin{array}{l}
^a\\
_1
\end{array} \right. - \int\limits_1^a {dx = a\ln a - x} \left| \begin{array}{l}
^a\\
_1
\end{array} \right. = a\ln a - a + 1\\
\Rightarrow 1 + 2a = a\ln a - a + 1 \Leftrightarrow 3a = a\ln a \Leftrightarrow \ln a = 3 \Leftrightarrow a = {e^3} \approx 20,08 \in \left( {18;21} \right)
\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong hình dưới đây, điểm B là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúng?
.png)
Cho hai đường thẳng phân biệt a, b và mặt phẳng (P). Chọn khẳng định đúng?
Cho hàm số \(y=f(x)\) liên tục trên đoạn [1;3], thỏa mãn \(f\left( {4 - x} \right) = f\left( x \right),\forall x \in \left[ {1;3} \right]\) và \(\int\limits_1^3 {xf\left( x \right)dx = - 2} \). Giá trị \(2\int\limits_1^3 {f\left( x \right)dx} \) bằng:
Tập hợp các số thực m để phương trình \({\log _2}x = m\) có nghiệm thực là
Trong không gian tọa độ Oxyz, góc giữa hai vectơ (\overrightarrow i\) và \(\overrightarrow u = \left( { - \sqrt 3 ;0;1} \right)\) là
Trong không gian Oxyz, cho điểm \(A\left( {1;0;0} \right),B\left( {0; - 1;0} \right),C\left( {0;0;1} \right),D\left( {1; - 1;1} \right)\). Mặt cầu tiếp xúc 6 cạnh của tứ diện ABCD cắt (ACD) theo thiết diện có diện tích S. Chọn mệnh đề đúng?
Cho mặt cầu (S) có đường kính 10cm và mặt phẳng (P) cách tâm mặt cầu một khoảng 4cm. Khẳng định nào sau đây là sai?
Cho hàm số \(f\left( x \right) = {3^{x - 4}} + \left( {x + 1} \right){.2^{7 - x}} - 6x + 3\). Giả sử \({m_0} = \frac{a}{b}\) (\(a,b \in Z,\frac{a}{b}\) là phân số tối giản) là giá trị nhỏ nhất của tham số thực m sao cho phương trình \(f\left( {7 - 4\sqrt {6x - 9{x^2}} } \right) + 2m - 1 = 0\) có số nghiệm nhiều nhất. Tính giá trị của biểu thức \(P = a + {b^2}\)
Trong không gian với hệ tọa độ Oxyz, đường thẳng \(\Delta :\left\{ \begin{array}{l}
x = 2 - t\\
y = 1\\
z = - 2 + 3t
\end{array} \right.\) không đi qua điểm nào sau đây?
Nguyên hàm của hàm số \(f\left( x \right) = {2^x} + x\) là
Cho y = F (x) và y = G (x) là những hàm số có đồ thị cho trong hình bên dưới, đặt P (x) = F (x).G (x). Tính P ' (2).
.png)
Cho hàm số \(y=f(x)\) có đồ thị trên đoạn [- 1;4] như hình vẽ dưới đây. Tính tích phân \(I = \int\limits_{ - 1}^4 {f\left( x \right)dx} \)
.png)
Cho hình nón đỉnh S có đáy là đường tròn tâm O bán kính R. Trên đường tròn (O) lấy 2 điểm A, B sao cho tam giác OAB vuông. Biết diện tích tam giác SAB bằng \({R^2}\sqrt 2 \), thể tích V của khối nón đã cho bằng
Cho các số thực \(a, b, c, d\) thay đổi luôn thỏa mãn \({\left( {a - 3} \right)^2} + {\left( {b - 6} \right)^2} = 1\) và \(4c + 3d - 5 = 0\). Tính giá trị nhỏ nhất của \(T = {\left( {c - a} \right)^2} + {\left( {d - b} \right)^2}\)
Đạo hàm của hàm số \(y = \log \left( {1 - x} \right)\) bằng


