Trong không gian với hệ tọa độ Oxyz, cho \(A\left( {1;2; - 3} \right),B\left( { - 3;2;9} \right).\) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là:
lượt xem
Cho hàm số y = f(x) có đạo hàm \(f'\left( x \right) = \left( {{x^2} - \sqrt 2 } \right){x^2}{\left( {x + 2} \right)^3},\forall x \in R.\) Số điểm cực tri của hàm số là:
lượt xem
Cho \(\int\limits_0^3 {f\left( x \right)dx = a,\int\limits_2^3 {f\left( x \right)dx = b.} } \) Khi đó \(\int\limits_0^2 {f\left( x \right)dx} \) bằng:
lượt xem
Rút gọn biểu thức \(P = {x^{\frac{1}{3}}}.\sqrt[6]{x}\) với x > 0
lượt xem
Đường cong trong hình bên là đồ thị của một trong bốn hàm số nào sau đây?
.png)
lượt xem
Biết đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 3}}\) cắt trục Ox, Oy lần lượt tại hai điểm phân biệt A, B. Tính diện tích S của tam giác OAB .
lượt xem
Giá trị lớn nhất của hàm số \(y = {x^3} - 3x + 5\) trên đoạn \(\left[ {0;\frac{3}{2}} \right]\) là:
lượt xem
Cho hình cầu (S) tâm I, bán kính R không đổi. Một hình trụ có chiều cao h và bán kính đáy r thay đổi nội tiếp hình cầu. Tính chiều cao h theo R sao cho diện tích xung quanh của hình trụ lớn nhất.
lượt xem
Tìm giá trị của tham số m để hàm số \(y = \frac{{\left( {m + 3} \right)x + 4}}{{x + m}}\) nghịch biến trên khoảng \(\left( { - \infty ;1} \right).\)
lượt xem
lượt xem
Tìm tất cả các giá trị thực của tham số m để hàm số \(y = \frac{m}{3}{x^3} + 2{x^2} + mx + 1\) có 2 điểm cực trị thỏa mãn điều kiện \({x_{C{\rm{D}}}} < {x_{CT}}.\)
lượt xem
Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) có đồ thị hàm số f'(x) như trong hình vẽ bên.
.png)
lượt xem
Lập phương trình tiếp tuyến với đồ thị hàm số y = f(x) thỏa mãn \({f^2}\left( {1 + 2x} \right) = x - {f^3}\left( {1 - x} \right)\) tại điểm có hoành độ x = 1?
lượt xem
lượt xem
Cho hai số thực x,y thỏa mãn \(x \ge 0,y \ge 1,x + y = 3.\) Giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = {x^3} + 2{y^2} + 3{x^2} + 4xy - 5x.\)
lượt xem
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích V
của khối cầu ngoại tiếp hình chóp đã cho biết \(\angle ASB = {120^0}.\)
lượt xem
Cho khối chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 48. Gọi M, N, P lần lượt là điểm thuộc các cạnh AB, CD, SC sao cho \(MA = MB,NC = 2ND,SP = PC.\) Tính thể tích V của khối chóp P.MBCN.
lượt xem
Với giá trị nào của tham số m thì phương trình \({4^x} - m{.2^{x + 1}} + 2m = 0\) có 2 nghiệm \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} = 3?\)
lượt xem
Cho hàm số \(y = \frac{{x + 2}}{{2x + 3}}\left( H \right).\) Viết phương trình tiếp tuyến của đồ thị hàm số (H), biết tiếp tuyến đó cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác OAB cân tại gốc tọa độ O.
lượt xem
Cho a, b >0 nếu \({\log _8}a + {\log _4}{b^2} = 5\) và \({\log _4}{a^2} + {\log _8}b = 7\) thì giá trị của ab bằng.
lượt xem
Cho hình nón có chiều cao h. Tính chiều cao x của khối trụ có thể tích lớn nhất nội tiếp trong hình nón theo h.
lượt xem
lượt xem
Cho hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây là đúng?
.png)
lượt xem
Tìm số thực a để phương trình \({9^x} + 9 = a{3^x}cox\left( {\pi x} \right)\) chỉ có duy nhất một nghiệm thực
lượt xem
Cho một cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 0\) và tổng 100 số hạng đầu bằng 24850. Tính \(S = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{49}}{u_{50}}}}.\)
lượt xem
Cho hình chop S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết \(AD = 2a,AB = BC = SA = a.\) Cạnh bên SA vuông góc với mặt đáy, gọi M là trung điểm của AD. Tính khoảng cách h từ M đến mặt phẳng (SCD).
lượt xem
Cho hàm số f(x) liên tục trên R và \(f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x.\) Tính tích phân \(I = \int\limits_{\frac{1}{2}}^2 {\frac{{f\left( x \right)}}{x}dx.} \)
lượt xem
Biến đổi \(\int\limits_0^3 {\frac{x}{{1 + \sqrt {1 + x} }}dx} \) thành \(\int\limits_1^2 {f\left( t \right)dt} \) với \(t = \sqrt {1 + x} .\) Khi đó f(t) là hàm số nào trong các hàm số sau đây?
lượt xem
Cho tập hợp \(A = \left\{ {2;3;4;5;6;7} \right\}.\) Có bao nhiêu số tự nhiên gồm 3 chữ số khác nhau được thành lập từ các chữ số thuộc A?
lượt xem
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right),SA = a.\) Gọi G là trọng tâm tam giác SCD. Tính thể tích khối chop G.ABCD.
lượt xem
Cho a,b >0 và \(a,b \ne 1,\) biểu thức \(P = {\log _{\sqrt 5 }}{b^3}.{\log _b}{a^4}\) có giá trị bằng bao nhiêu?
lượt xem
Khai triển \({\left( {1 + 2x + 3{x^2}} \right)^{10}} = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_{20}}{x^{20}}.\) Tính tổng \(S = {a_0} + 2{a_1} + 4{a_2} + ... + {2^{20}}{a_{20}}.\)
lượt xem
Cho chóp S.ABCD có đáy là hình vuông \(SA \bot \left( {ABCD} \right).\) Góc giữa đường thẳng SC và mặt phẳng (SAD) là góc?
lượt xem
Biết F(x) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{x - 1}}\) và \(F\left( 2 \right) = 1.\) Tính F(3)
lượt xem
Tìm tập xác định của hàm số \(y = \sqrt { - 2{x^2} + 5x - 2} + \ln \frac{1}{{{x^2} - 1}}\) là
lượt xem
Giá trị nhỏ nhất của hàm số \(y = x + \frac{9}{x}\) trên đoạn \(\left[ {2;4} \right]\) là
lượt xem
Cho hàm số \(y = {x^4} - 4{x^2} - 2\) có đồ thị (C) và đồ thị \(\left( P \right):y = 1 - {x^2}.\) Số giao điểm của (P) và đồ thị (C) là
lượt xem
Đồ thị hình bên là của hàm số nào?
.png)
lượt xem
Một cấp số nhân có số hạng đầu \({u_1} = 3,\) công bội \(q = 2.\) Biết \({S_n} = 765.\) Tìm n.
lượt xem
Có thể chia một khối lập phương thành bao nhiêu khối tứ diện có thể tích bằng nhau mà các đỉnh của tứ diện cũng là đỉnh của hình lập phương?
lượt xem
Tính \(F\left( x \right) = \int {x\sin 2xdx.} \) Chọn kết quả đúng.
lượt xem
Nghiệm của phương trình \(\sin x - \sqrt 3 \cos x = 2\sin 3x\) là
lượt xem
Tập nghiệm của bất phương trình \({9^x} - {2.6^x} + {4^x} > 0\) là
lượt xem
Trong mặt phẳng cho 10 điểm phân biệt \({A_1},{A_2},...,{A_{10}}\) trong đó có 4 điểm \({A_1},{A_2},{A_3},{A_4}\) thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác có 3 đỉnh được lấy trong 10 điểm trên?
lượt xem
Cho tam giác ABC với trọng tâm G. Gọi A’, B’, C’ lần lượt là trung điểm của các cạnh BC, AC, AB của tam giác ABC. Khi đó phép vị tự nào biến tam giác A’B’C thành tam giác ABC?
lượt xem
Cho hình nón có thiết diện qua trục của hình nón là tam giác vuông cân có cạnh góc vuông bằng \(a\sqrt {2.} \) Diện tích xung quanh của hình nón bằng:
lượt xem
Một trong các đồ thị ở hình vẽ là đồ thị của hàm số f(x) liên tục trên R thỏa mãn \(f'\left( 0 \right) = 0,f\left( x \right) < 0,\forall x \in \left( { - 1;2} \right).\) Hỏi đó là đó là đồ thị nào?
.png)
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P theo thứ tự là trung điểm của SA, SD và AB. Khẳng định nào sau đây đúng?
lượt xem
Cho khối lăng trụ đứng ABC.A'B'C' có BB' = a, đáy ABC là tam giác vuông cân tại B và \(AC = a\sqrt 2 .\) Tính thể tích V của khối lăng trụ đã cho.
lượt xem
Tính thể tích của khối trụ biết bán kính đáy của hình trụ đó bằng a và thiết diện đi qua trục là một hình vuông.
lượt xem