lượt xem
Hệ phương trình \(\left\{ \begin{array}{l}
{2^{x + y}} = 8\\
{2^x} + {2^y} = 5
\end{array} \right.\) có bao nhiêu nghiệm?
lượt xem
lượt xem
Biết \({\log _a}b = 2\). Giá trị của \({\log _{{a^2}b}}\frac{{{a^4}}}{{b\sqrt b }}\) bằng
lượt xem
E. coli là vi khuẩn đường ruột gây tiêu chảy, đau bụng dữ dội. Cứ sau 20 phút thì số lượng vi khuẩn E. coli tăng gấp đôi. Ban đầu, chỉ có 40 vi khuẩn E. coli trong đường ruột. Hỏi sau bao lâu, số lượng vi khuẩn E. coli là 671088640 con?
lượt xem
Cho \(a, b, c >1\). Biết rằng biểu thức \(P = lo{g_a}\left( {bc} \right) + lo{g_b}\left( {ac} \right) + 4lo{g_c}\left( {ab} \right)\) đạt giá trị nhất \(m\) khi \(lo{g_b}c = n\). Tính giá trị \(m+n\).
lượt xem
Tìm tất cả các giá trị của tham số để hàm số \(y = {\log _2}\left( {{x^2} - 2x + m} \right)\) có tập xác định là R.
lượt xem
lượt xem
Nếu \({\left( {7 + 4\sqrt 3 } \right)^{a - 1}} < 7 - 4\sqrt 3 \) thì
lượt xem
Cho hàm số \(y = x\left[ {\cos \left( {\ln x} \right) + \sin \left( {\ln x} \right)} \right]\). Khẳng định nào sau đây đúng?
lượt xem
Cho \(a>0, b>0\) và \({a^2} + {b^2} = 7ab\). Chọn mệnh đề đúng.
lượt xem
Cho \(a>0, b>0\) và biểu thức \(T = 2{\left( {a + b} \right)^{ - 1}}.{\left( {ab} \right)^{\frac{1}{2}}}.{\left[ {1 + \frac{1}{4}{{\left( {\sqrt {\frac{a}{b}} - \sqrt {\frac{b}{a}} } \right)}^2}} \right]^{\frac{1}{2}}}\). Khi đó:
lượt xem
Tập nghiệm của bất phương trình \({\log _2}\left( {{x^2} - 3x + 1} \right) \le 0\) là
lượt xem
Phương trình \({\log _4}{\left( {x + 1} \right)^2} + 2 = {\log _{\sqrt 2 }}\sqrt {4 - x} + {\log _8}{\left( {4 + x} \right)^3}\) có bao nhiêu nghiệm?
lượt xem
Giải phương trình \({\left( {2,5} \right)^{5x - 7}} = {\left( {\frac{2}{5}} \right)^{x + 1}}\).
lượt xem
Cho \(n\) là số nguyên dương và \(a > 0,a \ne 1\). Tìm \(n\) sao cho \({\log _a}2019 + {\log _{\sqrt a }}2019 + {\log _{\sqrt[3]{a}}}2019 + ... + {\log _{\sqrt[n]{a}}}2019 = 2033136.{\log _a}2019\)
lượt xem
Cho \(x > 0, y>0\) và \(K = {\left( {{x^{\frac{1}{2}}} - {y^{\frac{1}{2}}}} \right)^2}{\left( {1 - 2\sqrt {\frac{y}{x}} + \frac{y}{x}} \right)^{ - 1}}\). Xác định mệnh đề đúng.
lượt xem
Cho \({\log _2}m = a\) và \(A = {\log _m}\left( {8m} \right)\) với \(m > 0,m \ne 1\). Tìm mối liên hệ giữa \(A\) và \(a\).
lượt xem
Cho 2 số thực dương \(a, b\) thỏa mãn \(\sqrt a \ne b,a \ne 1,{\log _a}b = 2\). Tính \(T = {\log _{\frac{{\sqrt a }}{b}}}\sqrt[3]{{ba}}\).
lượt xem
Cho phương trình \({\log _5}\left( {{5^x} - 1} \right).{\log _{25}}\left( {{5^{x + 1}} - 5} \right) = 1\). Khi đặt \(t = {\log _5}\left( {{5^x} - 1} \right)\), ta được phương trình nào dưới đây?
lượt xem
Cho \(a = {\log _2}5,b = {\log _3}5\). Tính \({\log _{24}}600\) theo \(a, b\).
lượt xem
Đặt \(a = {\log _2}3,b = {\log _2}5,c = {\log _2}7\). Biểu thức biểu diễn \({\log _{60}}1050\) theo \(a, b, c\) là.
lượt xem
Cho \({\log _{12}}27 = a\). Tính \(T = {\log _{36}}24\) theo \(a\).
lượt xem
Giá trị nhỏ nhất, lớn nhất của hàm số \(y = x - \ln x\) trên đoạn \(\left[ {\frac{1}{2};\,{\rm{e}}} \right]\) theo thứ tự là
lượt xem
Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\) là
lượt xem
Cho hình lăng trụ tam giác đều ABCD.A'B'C'D' có 9 cạnh bằng nhau và bằng \(2a\). Tính diện tích S của mặt cầu ngoại tiếp hình lăng trụ đã cho.
lượt xem
Một cái nồi nấu nước người ta làm dạng hình trụ, chiều cao của nồi là 60cm, diện tích đáy \(900\pi cm^2\). Hỏi người ta cần miếng kim loại hình chữ nhật có kích thước là bao nhiêu để làm thân nồi đó? (bỏ qua kích thước các mép gấp).
lượt xem
Cho hình lăng trụ lục giác đều có cạnh đáy bằng \(a\sqrt 2 \), cạnh bên bằng \(2a\sqrt 2 \). Tính diện tích mặt cầu ngoại tiếp hình lăng trụ đã cho.
lượt xem
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng \(a\). Cạnh bên SA vuông góc với mặt đáy và \(SA = a\sqrt 2 \). Tính thể tích khối cầu ngoại tiếp hình chóp S.ABCD theo \(a\).
lượt xem
lượt xem
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông cân tại A, \(AB = AC = a,AA' = \sqrt 2 a\). Thể tích khối cầu ngoại tiếp hình tứ diện AB'A'C là
lượt xem
Cho hình nón đỉnh S, đáy là hình tròn tâm O, bán kính, \(R=3cm\), góc ở đỉnh hình nón là \(\varphi = 120^0 \). Cắt hình nón bởi mặt phẳng qua đỉnh S tạo thành tam giác đều SAB, trong đó A, B thuộc đường tròn đáy. Diện tích tam giác SAB bằng
lượt xem
Cho hình chóp S.ABCD có đáy là hình vuông, \(BD=2a\). Tam giác SAC vuông cân tạiÁC và nằm trong mặt phẳng vuông góc với đáy. Thể tích của khối cầu ngoại tiếp hình chóp đó là
lượt xem
Tam giác ABC vuông cân đỉnh A có cạnh huyền là 2. Quay tam giác ABC quanh trục BC thì được khối tròn xoay có thể tích là
lượt xem
Cho mặt cầu bán kính R ngoại tiếp một hình hộp chữ nhật có các kích thước \(a, 2a, 3a\). Mệnh đề nào dưới đây đúng?
lượt xem
Cắt khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật có và thuộc hai đáy của hình trụ, \(AB = 4a,AC = 5a\). Tính thể tích khối trụ.
lượt xem
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A, B. Biết \(SA \bot \left( {ABCD} \right)\), \(AB = BC = a,AD = 2a,SA = a\sqrt 2 \). Gọi E là trung điểm của AD. Tính bán kính mặt cầu đi qua các điểm S, A, B, C, E.
lượt xem
Cho tam giác ABC có \(\widehat {ABC} = 45^\circ \widehat {,ACB} = 30^\circ ,AB = \frac{{\sqrt 2 }}{2}\). Quay tam giác ABC xung quanh cạnh BC ta được khối tròn xoay có thể tích V bằng:
lượt xem
Cho hình nón có đường sinh bằng đường kính đáy và bằng 2. Bán kính của mặt cầu ngoại tiếp hình nón đó là:
lượt xem
Trong không gian, cho hình chữ nhật ABCD có AB = 1 và AD = 2. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN, ta được một hình trụ. Tính diện tích toàn phần \(S_{tp}\) của hình trụ đó.
lượt xem
Cho mặt cầu \(S(O;R)\) và điểm A cố định nằm ngoài mặt cầu với \(OA=d\). Qua A kẻ đường thẳng \(\Delta \) tiếp xúc với mặt cầu \(S\left( {O;R} \right)\) tại M. Công thức nào sau đây được dùng để tính độ dài đoạn thẳng AM?
lượt xem
lượt xem
Cắt một hình trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng \(3a\). Tính diện tích toàn phần của hình trụ đã cho.
lượt xem
Thể tích của khối nón có độ dài đường sinh bằng \(2a\) và diện tích xung quanh bằng \(2\pi {a^2}\) là
lượt xem
Cho hình trụ (T) được sinh ra khi quay hình chữ nhật ABCD quanh cạnh AB. Biết \(AC = 2\sqrt 3 a\) và góc \(\widehat {ACB} = 45^\circ \). Diện tích toàn phần \(S_{tp}\) của hình trụ (T) là
lượt xem
lượt xem
Một hình trụ có bán kính đáy là 2 cm. Một mặt phẳng đi qua trục của hình trụ, cắt hình trụ theo thiết diện là một hình vuông. Tính thể tích khối trụ đó.
lượt xem
Cho hình chóp S.ABC có tam giác ABC vuông tại B, SA vuông góc với mặt phẳng (ABC). \(SA=5, AB=3, BC=4\). Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC.
lượt xem
Cho tứ diện đều S.ABC cạnh \(a\). Diện tích xung quanh của hình nón đỉnh S và đường tròn đáy là đường tròn ngoại tiếp tam giác ABC là
lượt xem
Cho mặt cầu \((S_1)\) có bán kính \(R_1\), mặt cầu \((S_2)\) có bán kính \(R_2=2R_1\). Tính tỉ số diện tích của mặt cầu \((S_2)\) và \((S_1)\).
lượt xem
