Cho mặt cầu (S) tâm I bán kính R. M là điểm thỏa mãn \(IM = \frac{{3R}}{2}\). Hai mặt phẳng (P), (Q) qua M và tiếp xúc với (S) lần lượt tại A và B. Biết góc giữa (P) và (Q) bằng \(60^0\). Độ dài đoạn thẳng AB bằng
lượt xem
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và \(AB' \bot BC'\). Tinh thể tích V của khối lăng trụ đã cho
lượt xem
Cho số thực a dương khác 1. Biết rằng bất kỳ đường thẳng nào song song với trục Ox mà cắt đường thẳng \(y = {4^x},y = {a^x}\), trục tung lần lượt tại M, N và A thì AN = 2AM. Giá trị của a bằng
.png)
lượt xem
Tính: tổng S tất cả các giá trị tham số m để đồ thị hàm số \(f\left( x \right) = {x^3} - 3m{x^2} + 3mx + {m^2} - 2{m^3}\) tiếp xúc với trục hoành.
lượt xem
Cho một bảng ô vuông 3x3. Điền ngẫu nhiên các số 1, 2, 3, 4, 5, 6, 7, 8, 9 vào bảng trên ( mỗi ô chỉ điền một số). Gọi A là biến cố: “mỗi hàng, mỗi cột bất kì đều có ít nhất một số lẻ”. Xác suất của biến cố A bằng:
.png)
lượt xem
lượt xem
Cho hình thang ABCD có \(\angle A = \angle B = {90^0},\,AB = BC = a,\,AD = 2a\). Tính thể tích khối nón tròn xoay sinh ra khi quay quanh hình thang ABCD xung quanh trục CD
.png)
lượt xem
Cho hình lập phương ABCD.A’B’C’D’. Có bao nhiêu mặt trụ tròn xoay đi qua sáu đỉnh A, B, D, A’, B’, D’?
.png)
lượt xem
Cho lăng trụ \(ABC.{A_1}{B_1}{C_1}\) có diện tích mặt bên \(AB{B_1}{A_1}\) bằng 4, khoảng cách giữa cạnh \(CC_1\) và mặt phẳng \(\left( {AB{B_1}{A_1}} \right)\) bằng 6. Tính thể tích khối lăng trụ \(ABC.{A_1}{B_1}{C_1}\)
lượt xem
Giả sử p, q là các số thực dương thỏa mãn \({\log _{16}}p = {\log _{20}}q = {\log _{25}}\left( {p + q} \right)\). Tìm giá trị của \(\frac{p}{q}\)
lượt xem
Biết \(F\left( x \right) = \left( {a{x^2} + bx + c} \right){e^{ - x}}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {2{x^2} - 5x + 2} \right){e^{ - x}}\) trên R. Giá trị của biểu thức \(f\left( {F\left( 0 \right)} \right)\) bằng
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong một mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm của các cạnh AB và AD. Tính sin của góc tạo bởi giữa đường thẳng SA và mặt phẳng (SHK)
lượt xem
Cho tứ diện ABCD có tam giác ABD đều là cạnh bằng 2, tam giác ABC vuông tại B, \(BC = \sqrt 3 \). Biết khoảng cách giữa hai đường thẳng chéo nhau AB và CD bằng \(\frac{{\sqrt {11} }}{2}\). Khi đó độ dài cạnh CD là
lượt xem
Cho hình chóp S.ABCD có đáy hình vuông cạnh a. Cạnh bên \(SA = a\sqrt 6 \) và vuông góc với đáy (ABCD). Tính theo a diện tích mặt cầu ngoại tiếp khối chóp S.ABCD
lượt xem
Cho tứ diện ABCD có AC = 3a, BD = 4a. Gọi M, N lần lượt là trung điểm của AD và BC. Biết AC vuông góc với BD. Tính MN
lượt xem
Tập nghiệm S của bất phương trình \({\log _2}\left( {x - 1} \right) < 3\) là
lượt xem
Tổng các nghiệm của phương trình \({3^{x + 1}} + {3^{1 - x}} = 10\) là
lượt xem
Đồ thị hàm số \(v = \frac{{\sqrt {x - 7} }}{{{x^2} + 3x - 4}}\) có bao nhiêu đường tiệm cận?
lượt xem
Cho hàm số \(y = {x^3} - 2x + 1\) có đồ thị (C). Hệ số góc k của tiếp tuyến với (C) tại điểm có hoành độ bằng 1 bằng
lượt xem
Cho hàm số \(y=f(x)\) xác định, liên tục trên R\{1} và có bảng biến thiên như hình dưới đây
Tập hợp S tất cả các giá trị của m đề phương trình \(f(x)=m\) có đúng ba nghiệm thực là
lượt xem
Cho cấp số nhân \((u_n)\) có công bội dương và \({u_2} = \frac{1}{4},\,{u_4} = 4\). Giá trị của \(u_1\) là
lượt xem
Giá trị nhỏ nhất của hàm số \(y = x{e^{x + 1}}\) trên [-2;0] bằng
lượt xem
Có bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau, sao cho trong mỗi số đó nhất thiết phải có mặt chữ số 0?
lượt xem
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng a, \(SA \bot \left( {ABC} \right)\), SA = 3a. Thể tích V của khối chóp S.ABCD là
lượt xem
Từ một tập gồm 10 câu hỏi, trong đó có 4 câu lý thuyết và 6 câu bài tập, người ta tạo thành các đề thi. Biết rằng một đề thi phải gồm 3 câu hỏi trong đó có ít nhất 1 câu lý thuyết và 1 câu bài tập. Hỏi có thể tạo được bao nhiêu đề khác nhau?
lượt xem
Đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{x + 1}}{{x - 2}}\) là
lượt xem
Các khoảng nghịch biến của hàm số \(y = - {x^4} + 2{x^2} - 4\) là
lượt xem
Một hình nón tròn xoay có độ dài đường sinh bằng đường kính đáy. Diện tích đáy của hình nón bằng \(9\pi\). Khi đó đường cao hình nón bằng
lượt xem
Cho \(F(x)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{2x - 1}}\). Biết F(1) = 2. Giá trị của F(2) là
lượt xem
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là
lượt xem
Cho hàm số \(f(x)\) có đạo hàm \(f'\left( x \right) = x\left( {x - 1} \right){\left( {x + 2} \right)^2};\,\,\forall x \in R\). Số điểm cực trị của hàm số đã cho là:
lượt xem
Cho phương trình \(\log _2^2\left( {4x} \right) - {\log _{\sqrt 2 }}\left( {2x} \right) = 5\). Nghiệm nhỏ nhất của phương trình thuộc khoảng
lượt xem
Tập nghiệm S của bất phương trình \({3^x} < {e^x}\) là
lượt xem
Tập hợp tâm các mặt cầu đi qua ba điểm phân biệt không thẳng hàng là :
lượt xem
Trong các hàm số sau, hàm số nào đồng biến trên R?
lượt xem
Cho biết hàm số \(f(x)\) có đạo hàm \(f'(x)\) và có một nguyên hàm là \(F(x)\). Tìm \(\int {\left[ {2f\left( x \right) + f'\left( x \right) + 1} \right]} dx\) ?
lượt xem
Với a và b là hai số thực dương, \(a \ne 1\). Giá trị của \({a^{{{\log }_a}{b^3}}}\) bằng
lượt xem
Một khối trụ có thiết diện qua một trục là một hình vuông. Biết diện tích xung quanh của khối trụ bằng \(16\pi\) Thể tích V của khối trụ bằng
lượt xem
Đường cong ở hình bên dưới là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào ?
.jpg)
lượt xem
Cho khối nón có bán kính đáy là r, chiều cao h. Thể tích V của khối nón đó là :
lượt xem
Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi, biết AA’ = 4a; AC = 2a, BD = a. Thế tích V của khối lăng trụ là
lượt xem
Trong các dãy số sau, dãy số nào là một cấp số cộng?
lượt xem
Cho hàm số \(y = f\left( x \right),\,\,x \in \left[ { - 2;3} \right]\) có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f(x)\) trên đoạn [- 2;3]. Giá trị của S = M + m là:
.png)
lượt xem
Với \(\alpha \) là số thực bất kỳ, mệnh đề nào sau đây Sai?
lượt xem
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình bên. Mệnh đề nào dưới đây đúng?
lượt xem
lượt xem
Cho hàm số \(y = \frac{{3x + b}}{{ax - 2}}(ab \ne - 2)\). Biết rằng a và b là các giá trị thỏa mãn tiếp tuyến của đồ thị hàm số tại điểm A(1;- 4) song song với đường thẳng \(d:7x + y - 4 = 0\). Khi đó giá trị của bằng:
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D, cạnh bên SA vuông góc với mặt đáy. Biết \(AB = 2AD = 2DC = 2a\), góc giữa hai mặt phẳng (SAB) và (SBC) là \(60^0\). Độ dài cạnh SA là:
lượt xem
.png)