Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y = 2\left( {x - 1} \right){{\rm{e}}^x}\), trục tung và trục hoành. Tính thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox:
lượt xem
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3} - x\) và đồ thị hàm số \(y = x - {x^2}\).
lượt xem
Tính tích phân \(I = \int\limits_1^{\rm{e}} {x\ln x} {\rm{d}}x\):
lượt xem
Cho \(F\left( x \right) = \frac{1}{{2{x^2}}}\) là một nguyên hàm của hàm số \(\frac{{f\left( x \right)}}{x}\). Tìm nguyên hàm của hàm số \(f'\left( x \right)\ln x\).
lượt xem
Tìm nguyên hàm \(F(x)\) của hàm số \(f\left( x \right) = \sin x + \cos x\) thoả mãn \(F\left( {\frac{\pi }{2}} \right) = 2\)
lượt xem
Cho \(F(x)\) là một nguyên hàm của hàm số \(f\left( x \right) = {{\rm{e}}^x} + 2x\) thỏa mãn \(F\left( 0 \right) = \frac{3}{2}.\) Tìm \(F(x)\)
lượt xem
Tìm nguyên hàm của hàm số \(f\left( x \right) = \sqrt {2x - 1} \).
lượt xem
Cho \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right){\rm{d}}x} = 5\). Tính \(I = \int\limits_0^{\frac{\pi }{2}} {\left[ {f\left( x \right) + 2\sin x} \right]{\rm{d}}x} \).
lượt xem
Cho \(\int\limits_{ - 1}^2 {f\left( x \right){\rm{d}}x} = 2\) và \(\int\limits_{ - 1}^2 {g\left( x \right){\rm{d}}x} = - 1\). Tính \(I = \int\limits_{ - 1}^2 {\left[ {x + 2f\left( x \right) - 3g\left( x \right)} \right]{\rm{d}}x} \)
lượt xem
Cho hàm số \(f(x)\) có đạo hàm trên đoạn [1;2], \(f(1)=1\) và \(f(2)=2\). Tính \(I = \int\limits_1^2 {f'\left( x \right){\rm{d}}x} \)
lượt xem
Viết công thức tính thể tích V của khối tròn xoay được tạo ra khi quay hình thang cong, giới hạn bởi đồ thị hàm số \(y=f(x)\), trục Ox và hai đường thẳng \(x=a, x = b\left( {a < b} \right)\), xung quanh trục Ox.
lượt xem
Tìm nguyên hàm của hàm số \(f\left( x \right) = {7^x}\).
lượt xem
Tìm nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{5x - 2}}\)
lượt xem
Tìm nguyên hàm của hàm số \(f\left( x \right) = \cos 3x\).
lượt xem
lượt xem
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới dây là phương trình mặt cầu có tâm I(1;2;- 1) và tiếp xúc với mặt phẳng \(\left( P \right):x - 2y - 2z - 8 = 0\)?
lượt xem
Bán kính mặt cầu tâm I(4;2;- 1) và tiếp xúc với mặt phẳng \((\alpha ):12x - 5z - 19 = 0\).
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I nằm trên mặt phẳng (Oxy) và đi qua ba điểm A(1;2;- 4), B(1;- 3;1), C(2;2;3). Tọa độ tâm I là:
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) đi qua hai điểm \(A\left( {1;1;2} \right),\,\,B\left( {3;0;1} \right)\) và có tâm thuộc trục Ox. Phương trình của mặt cầu (S) là:
lượt xem
Trong không gian Oxyz, cho hai điểm \(M\left( {6;2; - 5} \right),N\left( { - 4;0;7} \right)\). Viết phương trình mặt cầu đường kính MN?
lượt xem
Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S) có phương trình: \({x^2} + {y^2} + {z^2} - 6x + 2y - 4z - 2 = 0\). Khi đó tọa độ tâm I và bán kính R là
lượt xem
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left( {1;2;1} \right),B\left( {3;1;0} \right),C\left( {3; - 1;2} \right)\). Phương trình đường thẳng (d) qua A và vuông góc với mặt phẳng (ABC) là
lượt xem
Trong không gian với tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{2} = y + 1 = z - 3\) và mặt phẳng \(\left( P \right):x + 2y - z + 5 = 0\). Mặt phẳng (Q) chứa đường thẳng d và tạo với (P) một góc nhỏ nhất có phương trình
lượt xem
Trong không gian với hệ toạ độ Oxyz, cho 2 điểm \(A\left( {1;2;1} \right),B\left( {3; - 1;5} \right)\). Phương trình mặt phẳng (P) vuông góc với AB và hợp với các trục tọa độ một tứ diện có thể tích bằng \(\frac{3}{2}\) là
lượt xem
Trong không gian với hệ tọa độ Oxyz cho điểm E(8;1;1). Viết phương trình mặt phẳng \((\alpha )\) qua E và cắt nửa trục dương Ox, Oy, Oz lần lượt tại A, B, C sao cho OG nhỏ nhất với G là trọng tâm tam giác ABC.
lượt xem
Trong không gian với hệ tọa độ Oxyz cho G(1;2;3). Viết phương trình mặt phẳng (P) đi qua điểm G và cắt các trục tọa độ tại ba điểm phân biệt A, B, C sao cho G là trọng tam giác ABC.
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho M(1;2;1). Viết phương trình mặt phẳng (P) qua M cắt trục Ox, Oy, OZ lần lượt tại A, B, C sao cho \(\frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\) đạt giá trị nhỏ nhất.
lượt xem
Cho điểm M(3;2;1). Mặt phẳng (P) đi qua điểm M và cắt các trục tọa độ Ox, Oy, Oz tại A, B, C sao cho M là trực tâm tam giác ABC. Phương trình mặt phẳng (P) là:
lượt xem
Cho điểm M(2;1;- 1) và hai mặt phẳng \((P): x - y + z - 4 = 0, (Q):3x - y + z - 1 = 0\). Viết phương trình mặt phẳng (R) đi qua điểm M và chứa giao tuyến của hai mặt phẳng (P), (Q)
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho A(10;2 - 1) và đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{3}\). Phương trình mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất là
lượt xem
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x + y - 3z + 2 = 0\). Viết phương trình mặt phẳng (Q) song song và cách (P) một khoảng bằng \(\frac{{11}}{{2\sqrt {14} }\).
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho điểm M(12;8;6). Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua các hình chiếu của M trên các trục tọa độ.
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho \(A\left( {1;0;2} \right),B\left( {1;1;1} \right),C\left( {2;3;0} \right)\). Viết phương trình mặt phẳng (ABC)
lượt xem
Trong không gian với hệ trục tọa độ Oxyz, cho A(1;2;- 5). Gọi M, N, P là hình chiếu của A lên các trục Ox, Oy, Oz. Phương trình mặt phẳng (MNP) là:
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {2; - 1;3} \right),{\rm{ }}B\left( {2;0;5} \right),{\rm{ }}C\left( {0; - 3; - 1} \right).\) Phương trình nào dưới đây là phương trình của mặt phẳng đi qua A và vuông góc với BC
lượt xem
Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng trung trực của đoạn AB với \(A\left( {1; - 2;3} \right),B\left( {3;2;1} \right)\) là
lượt xem
Cho mặt phẳng \(\left( \alpha \right):2x - y + 3z - 1 = 0\). Phương trình mặt phẳng \(\left( \beta \right)\parallel \left( \alpha \right)\) và \(\left( \beta \right)\) đi qua điểm M(1;-3;2)
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(- 1;2;1), B(0;0;- 2), C(1;0;1), D(2;1;- 1). Tính thể tích tứ diện ABCD
lượt xem
Trong không gian với hệ tọa độ Oxyz cho \(A\left( {1;2;0} \right),B\left( {3; - 1;1} \right)\) và C(1;1;1). Tính diện tích S của tam giác ABC.
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho A(- 1;2;4), B(- 1;1;4), C(0;0;4). Tìm số đo của \(\widehat {ABC}\).
lượt xem
Trong không gian với hệ trục tọa độ Oxyz, cho điểm I(2;6;- 3) và các mặt phẳng \(\left( \alpha \right):x - 2 = 0,\,\left( \beta \right):y - 6 = 0,\,\left( \gamma \right):z + 3 = 0\). Tìm mệnh đề sai:
lượt xem
Trong không gian với hệ tọa độ Oxyz cho hai điểm \(M\left( {3;0;0} \right),\,N\left( {0;0;4} \right)\). Tính độ dài đoạn thẳng MN.
lượt xem
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;- 2;- 1) và B(1; - 1;2). Tọa độ điểm M thuộc đoạn AB sao cho MA = 2MB là
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D'. Biết A(1;0;1), B(2;1;2), C'(4;5;-5), D(1;-1;1). Tọa độ của đỉnh A' là:
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;0;3} \right),\,\,B\left( {2;3; - 4} \right),\,\,C\left( { - 3;1;2} \right)\). Xét điểm D sao cho tứ giác ABCD là hình bình hành. Tìm tọa độ điểm D.
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;-3;7), B(0;4;-3) và C(4;2;5). Tìm tọa độ điểm M nằm trên mp (Oxy) sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) có giá trị nhỏ nhất
lượt xem
Trong không gian với hệ tọa độ Oxyz, tìm trên trục Oz điểm M cách đều điểm A(2;3;4) và mặt phẳng \(\left( \alpha \right):2x + 3y + z - 17 = 0\)
lượt xem
.png)