Lời giải của giáo viên
ToanVN.com
\(M \in Oz \Rightarrow M\left( {0,0,c} \right)\)
Theo ycbt , có \(MA = d\left[ {M,\left( \alpha \right)} \right]\)
\(\begin{array}{l}
\Leftrightarrow \sqrt {4 + 9 + {{\left( {c - 4} \right)}^2}} = \frac{{\left| {c - 17} \right|}}{{\sqrt {14} }}\\
\Leftrightarrow 14\left( {{c^2} - 8c + 29} \right) = {\left( {c - 17} \right)^2}\\
\Leftrightarrow c = 3
\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {2; - 1;3} \right),{\rm{ }}B\left( {2;0;5} \right),{\rm{ }}C\left( {0; - 3; - 1} \right).\) Phương trình nào dưới đây là phương trình của mặt phẳng đi qua A và vuông góc với BC
Trong không gian với hệ tọa độ Oxyz, cho A(10;2 - 1) và đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{3}\). Phương trình mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất là
Trong không gian với hệ tọa độ Oxyz cho điểm E(8;1;1). Viết phương trình mặt phẳng \((\alpha )\) qua E và cắt nửa trục dương Ox, Oy, Oz lần lượt tại A, B, C sao cho OG nhỏ nhất với G là trọng tâm tam giác ABC.
Trong không gian với hệ toạ độ Oxyz, cho 2 điểm \(A\left( {1;2;1} \right),B\left( {3; - 1;5} \right)\). Phương trình mặt phẳng (P) vuông góc với AB và hợp với các trục tọa độ một tứ diện có thể tích bằng \(\frac{3}{2}\) là
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) đi qua hai điểm \(A\left( {1;1;2} \right),\,\,B\left( {3;0;1} \right)\) và có tâm thuộc trục Ox. Phương trình của mặt cầu (S) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I nằm trên mặt phẳng (Oxy) và đi qua ba điểm A(1;2;- 4), B(1;- 3;1), C(2;2;3). Tọa độ tâm I là:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\) và hai điểm A(1;5;0), B(3;3;6). Điểm \(M \in d\) sao cho tam giác MAB có diện tích nhỏ nhất có tọa độ là
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;-1;1), B(2;1;-2), C(0;0;1). Gọi H(x;y;z) là trực tâm tam giác ABC thì giá trị \(x+y+z\) là kết quả nào dưới đây?
Trong không gian với hệ tọa độ Oxyz cho hai điểm \(M\left( {3;0;0} \right),\,N\left( {0;0;4} \right)\). Tính độ dài đoạn thẳng MN.
Trong không gian với hệ tọa độ Oxyz cho \(A\left( {1;2;0} \right),B\left( {3; - 1;1} \right)\) và C(1;1;1). Tính diện tích S của tam giác ABC.
Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có A(1;2;-1), C(3;-4;1), B'(2;-1;3) và D'(0;3;5). Giả sử tọa độ D(x;y;z) thì giá trị của \(x+2y-3z\) là kết quả nào dưới đây?
Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left( {1;2;1} \right),B\left( {3;1;0} \right),C\left( {3; - 1;2} \right)\). Phương trình đường thẳng (d) qua A và vuông góc với mặt phẳng (ABC) là
Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D'. Biết A(1;0;1), B(2;1;2), C'(4;5;-5), D(1;-1;1). Tọa độ của đỉnh A' là:
Trong không gian với hệ tọa độ Oxyz, cho A(- 1;2;4), B(- 1;1;4), C(0;0;4). Tìm số đo của \(\widehat {ABC}\).
Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;0;3} \right),\,\,B\left( {2;3; - 4} \right),\,\,C\left( { - 3;1;2} \right)\). Xét điểm D sao cho tứ giác ABCD là hình bình hành. Tìm tọa độ điểm D.


