Cho hàm số y = f(x) có đồ thị như hình vẽ bên.
.jpg.png)
Hàm số đồng biến trên khoảng nào sau đây?
lượt xem
Trong không gian với hệ tọa độ Oxyz, đường thẳng \(d:\,\left\{ \begin{array}{l} x = - 2 + t\\ y = 1 + 2t\\ z = 5 - 3t \end{array} \right.\left( {t \in R} \right)\) có véc tơ chỉ phương là
lượt xem
Đồ thị sau đây là đồ thị của hàm số nào?
.jpg.png)
lượt xem
Nếu \(\int\limits_{1}^{3}{f\left( x \right)\text{d}x=2}\) thì \(\int\limits_{1}^{3}{3f\left( x \right)\text{d}x}\) bằng
lượt xem
Thể tích của khối trụ có chu vi đáy bằng \(4\pi a\) và độ dài đường cao bằng a là
lượt xem
Cho 4 điểm \(A\left( -2;-1;3 \right), B\left( 2;3;1 \right), C\left( 1;2;3 \right), D\left( -4;1;3 \right)\). Hỏi có bao nhiêu điểm trong bốn điểm đã cho thuộc mặt phẳng \(\left( \alpha \right):x+y+3z-6=0\)?
lượt xem
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên dưới. Hỏi hàm số đó có bao nhiêu điểm cực trị?
.jpg.png)
lượt xem
lượt xem
Cho số phức z thỏa mãn điều kiện \(\left| \frac{z+2-i}{\overline{z}+1-i} \right|=\sqrt{2}\). Tìm giá trị lớn nhất của \(\left| z \right|\).
lượt xem
lượt xem
Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn \(\log _{3}^{{}}\left( x+y \right)=\log _{4}^{{}}\left( {{x}^{2}}+{{y}^{2}} \right)\)?
lượt xem
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình bên.
.jpg.png)
Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để hàm số \(y=\left| f\left( x-2018 \right)+m \right|\) có 5 điểm cực trị. Tổng tất cả các giá trị của tập S bằng
lượt xem
lượt xem
lượt xem
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a góc giữa cạnh bên và mặt phẳng đáy bằng \(60{}^\circ \). Tính thể tích khối chóp S.ABCD.
lượt xem
Tìm phần ảo của số phức z thỏa mãn \(z+2\overline{z}={{\left( 2-i \right)}^{3}}\left( 1-i \right)\).
lượt xem
lượt xem
Tìm tất cả giá trị của tham số m để bất phương trình \(\log \left( 2{{x}^{2}}+3 \right)>\log \left( {{x}^{2}}+mx+1 \right)\) có tập nghiệm là \(\mathbb{R}\).
lượt xem
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
.png)
Đặt \(g\left( x \right)=f\left( x+2 \right)+\frac{1}{3}{{x}^{3}}-2{{x}^{2}}+3x+2019\). Khẳng định nào sau đây đúng?
lượt xem
Phương trình tham số của đường thẳng \(\left( d \right)\) đi qua hai điểm \(A\left( 1;2;-3 \right)\) và \(B\left( 3;-1;1 \right)\) là
lượt xem
Trong không gian Oxyz, cho hai điểm \(A\left( -2;1;0 \right), B\left( 2;-1;2 \right)\). Phương trình của mặt cầu có đường kính AB là
lượt xem
Cho hình chóp tứ giác đều S.ABCD có các cạnh đáy đều bằng a và các cạnh bên đều bằng 2a. Tính khoảng cách từ S đến mặt phẳng (ABCD).
lượt xem
Cho hình chóp \(S.ABC\text{D}\) có đáy là hình vuông, \(AC=a\sqrt{2}\) . SA vuông góc với mặt phẳng \(\left( ABCD \right), SA=a\sqrt{3}\) (minh họa như hình bên). Góc giữa đường thẳng SB và mặt phẳng \(\left( ABCD \right)\) bằng
.png)
lượt xem
Cho số phức z thỏa mãn: \(z\left( 2-i \right)+13i=1\). Tính mô đun của số phức z.
lượt xem
Cho \(\int\limits_{0}^{2}{f\left( x \right)\text{d}x}=3,\int\limits_{0}^{2}{g\left( x \right)\text{d}x}=-1\) thì \(\int\limits_{0}^{2}{\left[ f\left( x \right)-5g\left( x \right)+x \right]\text{d}x}\) bằng:
lượt xem
Tập nghiệm của bất phương trình \({{\log }_{3-\sqrt{5}}}\left( 2x-3 \right)\ge 0\) là
lượt xem
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=2{{x}^{3}}+3{{x}^{2}}-1\) trên đoạn \(\left[ -2;1 \right]\). Tổng M+m bằng:
lượt xem
Hàm số \(y={{x}^{3}}-3{{x}^{2}}+10\) nghịch biến trên khoảng nào sau đây?
lượt xem
Từ một hộp chứa ba quả cầu trắng và hai quả cầu đen lấy ngẫu nhiên hai quả. Xác suất để lấy được cả hai quả trắng là:
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( 1;2;2 \right), B\left( 3;-2;0 \right)\). Một vectơ chỉ phương của đường thẳng AB là:
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( -2;0;0 \right)\) và vectơ \(\overrightarrow{n}\left( 0;1;1 \right)\). Phương trình mặt phẳng \(\left( \alpha \right)\) có vectơ pháp tuyến \(\overrightarrow{n}\) và đi qua điểm A là
lượt xem
Trong không gian Oxyz, cho mặt cầu \(\left( S \right): {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4x+2y-6z+5=0\). Tọa độ tâm I và bán kính của mặt cầu \(\left( S \right)\) bằng:
lượt xem
Trong không gian với hệ trục tọa độ Oxyz, cho \(\overrightarrow{a}=-\overrightarrow{i}+2\overrightarrow{j}-3\overrightarrow{k}\). Tọa độ của vectơ \(\overrightarrow{a}\) là
lượt xem
Cho hình trụ có bán kính đáy \(r\) và độ dài đường sinh là \(l\). Thể tích khối trụ là:
lượt xem
Cho khối nón có bán kính đáy \(r=\sqrt{3}\) và chiều cao h=4. Tính thể tích V của khối nón đã cho.
lượt xem
Khối chóp có diện tích đáy là \(B\), chiều cao bằng \(h\). Thể tích \(V\) của khối chóp là
lượt xem
Thể tích của khối hộp chữ nhật có độ dài ba cạnh lần lượt là \(1;2;3\)
lượt xem
Cho hai số phức \({{z}_{1}}=2+2i\) và \({{z}_{2}}=2-i\). Điểm biểu diễn số phức \({{z}_{1}}+{{z}_{2}}\) trên mặt phẳng tọa độ là điểm nào dưới đây?
lượt xem
Cho hai số phức \({{z}_{1}}=3+2i\) và \({{z}_{2}}=1-i\). Phần ảo của số phức \({{z}_{1}}-{{z}_{2}}\) bằng
lượt xem
Số phức liên hợp của số phức \(z=-2+3i\).
lượt xem
Giá trị của \(\int\limits_{0}^{3}{\text{d}x}\) bằng
lượt xem
Nếu \(\int\limits_{2}^{5}{f\left( x \right)\text{d}x}=3\) và \(\int\limits_{5}^{7}{f\left( x \right)\text{d}x}=9\) thì \(\int\limits_{2}^{7}{f\left( x \right)\text{d}x}\) bằng bao nhiêu?
lượt xem
Tìm nguyên hàm của hàm số \(f\left( x \right)=\frac{2}{4x-3}\)
lượt xem
Họ nguyên hàm của hàm số \(f\left( x \right)={{\text{e}}^{x}}+\cos x\) là
lượt xem
Nghiệm nhỏ nhất của phương trình \({{\log }_{5}}\left( {{x}^{2}}-3x+5 \right)=1\) là
lượt xem
Tìm tập nghiệm S của phương trình \({{{5}^{2{{x}^{2}}-x}}=5}\)
lượt xem
Cho a là số dương tuỳ ý, \(\sqrt[4]{{{a}^{3}}}\) bằng
lượt xem
Tính đạo hàm của hàm số \(y={{\log }_{5}}({{x}^{2}}+1).\)
lượt xem
Với a là số thực dương tùy ý khác 1, ta có \({{\log }_{3}}\left( {{a}^{2}} \right)\) bằng:
lượt xem
Số giao điểm của đồ thị hàm số \(y={{x}^{4}}-4{{x}^{2}}-5\) và trục hoành là
lượt xem
.jpg.png)
.png)