Ông An có một mảnh vườn hình elip có độ dài trục lớn bằng 16m và độ dài trục bé bằng 10m. Ông muốn trồng hoa trên một dải đất rộng 8m và nhận trục bé của elip làm trục đối xứng (như hình vẽ). Biết kinh phí để trồng hoa là 100.000$ đồng/\(1\,{{m}^{2}}\). Hỏi ông An cần bao nhiêu tiền để trồng hoa trên dải đất đó? (Số tiền được làm tròn đến hàng nghìn).
.png)
A. 7.862.000 đồng
B. 7.653.000 đồng
C. 7.128.000 đồng
D. 7.826.000 đồng
Lời giải của giáo viên
ToanVN.com
Giả sử elip có phương trình \(\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\), với a>b>0.
Từ giả thiết ta có \(2a=16\Rightarrow a=8\) và \(2b=10\Rightarrow b=5\)
Vậy phương trình của elip là \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1 \Rightarrow \left[ \begin{array}{l} y = - \frac{5}{8}\sqrt {64 - {y^2}} \,\,\,\left( {{E_1}} \right)\\ y = \frac{5}{8}\sqrt {64 - {y^2}} \,{\rm{ }}\,\,\left( {{E_1}} \right) \end{array} \right.\)
Khi đó diện tích dải vườn được giới hạn bởi các đường \(\left( {{E}_{1}} \right);\,\,\left( {{E}_{2}} \right);\,\,x=-4;\,\,x=4\) và diện tích của dải vườn là \(S=2\int\limits_{-4}^{4}{\frac{5}{8}\sqrt{64-{{x}^{2}}}\text{d}x}=\frac{5}{2}\int\limits_{0}^{4}{\sqrt{64-{{x}^{2}}}\text{d}x}\)
Tính tích phân này bằng phép đổi biến x=8sin t, ta được \(S=80\left( \frac{\pi }{6}+\frac{\sqrt{3}}{4} \right)\)
Khi đó số tiền là \(T=80\left( \frac{\pi }{6}+\frac{\sqrt{3}}{4} \right).100000=7652891,82\simeq 7.653.000\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hai số phức \({{z}_{1}}=3+2i\) và \({{z}_{2}}=1-i\). Phần ảo của số phức \({{z}_{1}}-{{z}_{2}}\) bằng
Tìm tập nghiệm S của phương trình \({{{5}^{2{{x}^{2}}-x}}=5}\)
Họ nguyên hàm của hàm số \(f\left( x \right)={{\text{e}}^{x}}+\cos x\) là
Cho a là số dương tuỳ ý, \(\sqrt[4]{{{a}^{3}}}\) bằng
Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l} {x^2} + 3\quad khi\;x \ge 1\\ 5 - x\quad \;\,khi\;x < 1 \end{array} \right.\). Tính \(I = 2\int\limits_0^{\frac{\pi }{2}} {f\left( {\sin x} \right)\cos xdx + 3\int\limits_0^1 {f\left( {3 - 2x} \right)} } dx\)
Cho \(\int\limits_{0}^{2}{f\left( x \right)\text{d}x}=3,\int\limits_{0}^{2}{g\left( x \right)\text{d}x}=-1\) thì \(\int\limits_{0}^{2}{\left[ f\left( x \right)-5g\left( x \right)+x \right]\text{d}x}\) bằng:
Cho hình chóp \(S.ABC\text{D}\) có đáy là hình vuông, \(AC=a\sqrt{2}\) . SA vuông góc với mặt phẳng \(\left( ABCD \right), SA=a\sqrt{3}\) (minh họa như hình bên). Góc giữa đường thẳng SB và mặt phẳng \(\left( ABCD \right)\) bằng
.png)
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( -2;0;0 \right)\) và vectơ \(\overrightarrow{n}\left( 0;1;1 \right)\). Phương trình mặt phẳng \(\left( \alpha \right)\) có vectơ pháp tuyến \(\overrightarrow{n}\) và đi qua điểm A là
Cho hai số phức \({{z}_{1}}=2+2i\) và \({{z}_{2}}=2-i\). Điểm biểu diễn số phức \({{z}_{1}}+{{z}_{2}}\) trên mặt phẳng tọa độ là điểm nào dưới đây?
Trong không gian Oxyz, cho hai điểm \(A\left( -2;1;0 \right), B\left( 2;-1;2 \right)\). Phương trình của mặt cầu có đường kính AB là
Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn \(\log _{3}^{{}}\left( x+y \right)=\log _{4}^{{}}\left( {{x}^{2}}+{{y}^{2}} \right)\)?
Cho hình chóp tứ giác đều S.ABCD có các cạnh đáy đều bằng a và các cạnh bên đều bằng 2a. Tính khoảng cách từ S đến mặt phẳng (ABCD).
Một đội văn nghệ có 10 người gồm 6 nam và 4 nữ. Cần chọn ra một bạn nam và một bạn nữ để hát song ca. Hỏi có bao nhiêu cách chọn?
Phương trình tham số của đường thẳng \(\left( d \right)\) đi qua hai điểm \(A\left( 1;2;-3 \right)\) và \(B\left( 3;-1;1 \right)\) là


