Một đội gồm 5 nam và 8 nữ. Lập một nhóm gồm 4 người hát tốp ca, tính xác suất để trong 4 người được chọn có ít nhất 3 nữ.
lượt xem
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC). Gọi BE và DF là hai đường cao của tam giác BCD, DK là đường cao của tam giác ACD. Chọn khẳng định sai trong các khẳng định sau?
lượt xem
Ông A gửi tiết kiệm vào ngân hàng 300 triệu đồng, với loại kì hạn 3 tháng và lãi suất 12,8%/năm. Hỏi sau 4 năm 6 tháng thì số tiền T ông nhận được là bao nhiêu? Biết trong thời gian gửi ông không rút lãi ra khỏi ngân hàng?
lượt xem
Cho hàm số \(y = {x^3} - 3{x^2} - 9x + 5.\) Mệnh đề nào sau đây đúng?
lượt xem
Trong không gian với hệ trục tọa độ Oxyz, cho \(A\left( {0; - 1;1} \right),B\left( { - 2;1; - 1} \right),C\left( { - 1;3;2} \right).\) Biết rằng ABCD là hình bình hành, khi đó tọa độ điểm D là:
lượt xem
Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng a. Tính cosin của góc giữa một mặt bên và một mặt đáy.
lượt xem
Cho hàm số \(y = \lim \left( x \right)\) có \(\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = 1\) và \(\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = - 1.\) Khẳng định nào sau đây là đúng?
lượt xem
lượt xem
lượt xem
lượt xem
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x - 2y + 2z - {m^2} - 2m + 5 = 0\) và mặt phẳng \(\left( \alpha \right):x + 2y - 2{\rm{z}} + 3 = 0\). Tìm m để giao tuyến giữa \((\alpha)\) và (S) là một đường tròn
lượt xem
Cho hình lập phương ABCD.EFGH với \(\overrightarrow {AE} = \overrightarrow {BF} = \overrightarrow {CG} = \overrightarrow {HD} \). Gọi \(M,N,P,Q\) lần lượt là trung điểm bốn cạnh \(BF,FE,DH,DC\). Hỏi mệnh đề nào đúng?
lượt xem
lượt xem
Cho hình chữ nhật ABCD có \(AB = 2AD = 2\). Quay hình chữ nhật ABCD lần lượt quanh AD và AB ta được hai hình trụ tròn xoay có thể tích lần lượt là \({V_1},{V_2}\). Hệ thức nào sau đây là đúng?
lượt xem
lượt xem
Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình thoi canh a, \(\angle BCD = 120^\circ \) và \(AA' = \frac{{7a}}{2}\). Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A'B'C'D'
lượt xem
Cho hình chóp tứ giác đều S.ABCD, cạnh đáy AB = 2a, góc \(ASB = 2\alpha \left( {{0^0} < \alpha < 90^\circ } \right)\). Gọi V là thể tích của khối chóp. Kết quả nào sau đây sai?
lượt xem
Cho lăng trụ tam giác đều ABC.A'B'C' có góc giữa hai mặt phẳng (A'BC) và (ABC) bằng \(60^o\); cạnh AB = a. Tính thể tích khối đa diện ABCC'B'
lượt xem
Tìm số phức z có mô đun nhỏ nhất thỏa mãn \(\left| {iz - 3} \right| = \left| {z - 2 - i} \right|\)
lượt xem
lượt xem
Số phức z thỏa mãn \(\frac{{z - 2i}}{{z - 2}}\) là số ảo. Tìm giá trị lớn nhất của biểu thức \(P = \left| {z - 1} \right| + \left| {z - i} \right|\)
lượt xem
Hai số phức z và \( - \frac{1}{{\overline z }}\) có điểm biểu diễn trong mặt phẳng phức là A, B. Khi đó
lượt xem
Cho hàm số y = f(x) liên tục trên đoạn \(\left[ {0;2a} \right]\). Hỏi mệnh đề nào sau đây đúng?
lượt xem
Trong mặt phẳng Oxy, cho prabol \(\left( P \right):y = {x^2}\). Viết phương trình đường thẳng d đi qua \(M\left( {1;3} \right)\) sao cho diện tích hình phẳng giới hạn bởi (P) và d đạt giá trị nhỏ nhất.
lượt xem
Tính thể tích V của vật thể tròn xoay sinh ra bởi hình phẳng giới hạn bởi đường cong \(y = \sqrt x \), trục tung và đường thẳng y =2 quay quanh trục Oy.
lượt xem
Ở một thành phố nhiệt độ sau t giờ, tính từ 8 giờ sáng được mô hình hóa bởi hàm \(T\left( t \right) = 50 + 14\sin \frac{{\pi t}}{2}\). Tìm nhiệt độ trung bình trong khoảng thời gian từ 8 giờ sáng đến 8 giờ tối. (Lấy kết quả gần đúng)
lượt xem
Cho hàm số \(g\left( x \right) = \int\limits_x^{{x^2}} {\frac{{dt}}{{\ln t}}} \) với x > 1. Tìm tập giá trị T của hàm số
lượt xem
Cho \(\int {\frac{1}{{\sqrt {mx + {m^2} - 8} }}} dx = \frac{2}{3}\sqrt {3x + 1} + C\). Tính giá trị của tích phân \(I = \int\limits_{m - 2}^e {x{{\ln }^2}x{\rm{d}}x} \)
lượt xem
lượt xem
Cho \(x,y,z > 0\) thỏa mãn điều kiện \(\frac{{x\left( {y + z - x} \right)}}{{\log x}} = \frac{{y\left( {z + x - y} \right)}}{{\log y}} = \frac{{z\left( {x + y - z} \right)}}{{\log z}}\)
Hỏi mệnh đề nào sau đây là đúng?
lượt xem
Năm 1992, người ta đã biết số \(p = {2^{756839}} - 1\) là một số nguyên tố (số nguyên tố lớn nhất được biết cho đến lúc đó) Hỏi rằng, viết trong hệ thập phân số nguyên tố đó có bao nhiêu chữ số? (Biết rằng \(\log 2 \approx 0,30102\))
lượt xem
Giá trị của biểu thức \(P = \sqrt {4\left[ {1 + \sqrt {1 + \left( {\frac{{{x^4} - 1}}{{2{x^2}}}} \right)} } \right]} \) tại \(x = \frac{1}{{\sqrt 2 }}\left( {{2^{\sqrt 2 }} + {2^{ - \sqrt 2 }}} \right)\)
lượt xem
Cho \(a,b,c > 1\). Xét hai mệnh đề sau:
\(\left( I \right).{\log _a}b + {\log _b}c + {\log _c}a \ge 3\)
\(\left( {II} \right).{\log _a}{b^2} + {\log _b}{c^2} + {\log _c}{a^2} \ge 24\)
lượt xem
Cho \(a = {\log _3}2,b = {\log _5}2\). Khi đó \({\log _{16}}60\) bằng:
lượt xem
Rút gọn biểu thức \(\frac{{\sqrt a .\sqrt[6]{a}}}{{\sqrt[3]{a}\sqrt[4]{a}}}\left( {a > 0} \right)\)
lượt xem
Cho hàm số \(y = \frac{{\ln x}}{x}\). Mệnh đề nào là mệnh đề đúng?
lượt xem
Tìm số giá trị nguyên của m để phương trình \(\log _3^2\sqrt {\log _3^2x + 1} - 2m - 1 = 0\) có ít nhất một nghiệm thuộc đoạn \(\left[ {1;{3^{\sqrt 3 }}} \right]\)
lượt xem
lượt xem
Gọi I là giao điểm hai tiệm cận. viết phương trình tiếp tuyến d của đồ thị hàm số biết d cắt tiệm cận đứng và tiệm cận ngang lần lượt tại A và B thỏa \(\cos BAI = \frac{{5\sqrt {26} }}{{26}}\)
lượt xem
Cho hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) có đồ thị (C). Gọi I là giao điểm tại hai tiềm cận. Có bao nhiêu điểm M thuộc (C) biết tiếp tuyến của (C) tại M cắt hai tiệm cận tại A, B tạo thành tam giác IAB có trung tuyến \(IN = \sqrt {10} \).
lượt xem
Tìm \(M \in \left( C \right):y = \frac{{2x + 1}}{{x - 1}}\) sao cho khoảng cách từ điểm M đến tiệm cận đứng bằng hai lần khoảng các từ điểm M đến tiệm cận ngang.
lượt xem
Cho x, y là hai số thực dương thay đổi và thỏa mãn điều kiện \(x + 2y - xy = 0\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{{{x^2}}}{{4 + 8y}} + \frac{{{y^2}}}{{1 + x}}\)
lượt xem
Khẳng định nào sau đây là sai?
lượt xem
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) đạt cực đại tại x = -2 với giá trị cực đại là 64; đạt cực tiểu tại x = 3 với giá trị cực tiểu là -61. Khi đó giá trị của a + b + c + d bằng
lượt xem
Tìm giá trị m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 1} \right)x + 1 + 3x\) có cực đại, cực tiểu sao cho \({y_{CD}} + {y_{CT}} > 2\)
lượt xem
Tìm giá trị của m để hàm số \(y = \frac{{{x^2} - 2mx + 3{m^2}}}{{2m - x}}\) nghịch biến trên khoảng \(\left( {1; + \infty } \right)\)
lượt xem
Xác định m để hàm số \(y = {x^4} + \left( {2m - 1} \right){x^2} + m - 5\) có hai khoảng đồng biến dạng \(\left( {a,b} \right)\) và \(\left( {c, + \infty } \right)\) với b < c.
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và SA = x. Giả sử \(SA \bot \left( {ABC} \right)\) và góc giữa hai mặt (SBC) và (SCD) bằng \(120^\circ \). Tìm x
lượt xem
Tính giá trị gần đúng với 3 chữ số thập phân của \(\ln \left( {0,004} \right)\)
lượt xem
Tìm số điểm gián đoạn của hàm số \(y = \frac{{x + 4}}{{{x^4} - 10{x^2} + 9}}\)
lượt xem