Cho hình chóp tứ giác đều S.ABCD, cạnh đáy AB = 2a, góc \(ASB = 2\alpha \left( {{0^0} < \alpha < 90^\circ } \right)\). Gọi V là thể tích của khối chóp. Kết quả nào sau đây sai?
A. \(V = \frac{{4{a^3}}}{3}.\frac{{\sqrt {\sin 2\alpha } }}{{\sin \alpha }}\)
B. \(V = \frac{{4{a^3}}}{3}.\frac{{\sqrt {\cos 2\alpha } }}{{\sin \alpha }}\)
C. \(V = \frac{{4{a^3}}}{3}.\sqrt {{{\cos }^2}\alpha - 1} \)
D. \(V = \frac{{4{a^3}}}{3}.\sqrt {\frac{1}{{{{\sin }^2}\alpha }} - 2} \)
Lời giải của giáo viên
ToanVN.com
.png)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y = f(x) liên tục trên đoạn \(\left[ {0;2a} \right]\). Hỏi mệnh đề nào sau đây đúng?
Tìm giá trị lớn nhất của hàm số \(y = {\sin ^4}x{\cos ^6}x\)
Tìm số giá trị nguyên của m để phương trình \(\log _3^2\sqrt {\log _3^2x + 1} - 2m - 1 = 0\) có ít nhất một nghiệm thuộc đoạn \(\left[ {1;{3^{\sqrt 3 }}} \right]\)
Cho hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) có đồ thị (C). Gọi I là giao điểm tại hai tiềm cận. Có bao nhiêu điểm M thuộc (C) biết tiếp tuyến của (C) tại M cắt hai tiệm cận tại A, B tạo thành tam giác IAB có trung tuyến \(IN = \sqrt {10} \).
Tìm số phức z có mô đun nhỏ nhất thỏa mãn \(\left| {iz - 3} \right| = \left| {z - 2 - i} \right|\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và SA = x. Giả sử \(SA \bot \left( {ABC} \right)\) và góc giữa hai mặt (SBC) và (SCD) bằng \(120^\circ \). Tìm x
Giả sử \(\int\limits_{ - 1}^2 {\frac{{{e^x}dx}}{{2 + {e^x}}}} = \ln \frac{{ae + {e^3}}}{{ae + b}}\) với a, b là các số nguyên dương. Tính giá trị của biểu thức \(P = \sin \left( {\frac{{\pi b}}{a} + 2017\pi } \right) + \cos \left( {\frac{{\pi b}}{a} - \sin 2018\pi } \right)\)
Trong không gian Oxyz, cho bốn điểm \(A\left( {2;0;0} \right),B\left( {0;4;0} \right),C\left( {0;0;6} \right),D\left( {2;4;6} \right)\).
ét các mệnh đề sau:
(I). Tập hợp các điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right| = \left| {\overrightarrow {MC} + \overrightarrow {MD} } \right|\) là một mặt phẳng
(II). Tập hợp các điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} } \right| = 4\) là một mặt cầu tâm \(I\left( {1;2;3} \right)\) và bán kính R = 1.
Gọi I là giao điểm hai tiệm cận. viết phương trình tiếp tuyến d của đồ thị hàm số biết d cắt tiệm cận đứng và tiệm cận ngang lần lượt tại A và B thỏa \(\cos BAI = \frac{{5\sqrt {26} }}{{26}}\)
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x - 2y + 2z - {m^2} - 2m + 5 = 0\) và mặt phẳng \(\left( \alpha \right):x + 2y - 2{\rm{z}} + 3 = 0\). Tìm m để giao tuyến giữa \((\alpha)\) và (S) là một đường tròn
Cho hàm số \(g\left( x \right) = \int\limits_x^{{x^2}} {\frac{{dt}}{{\ln t}}} \) với x > 1. Tìm tập giá trị T của hàm số
Tìm giá trị m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 1} \right)x + 1 + 3x\) có cực đại, cực tiểu sao cho \({y_{CD}} + {y_{CT}} > 2\)
Tính giới hạn của hàm số \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[3]{{x + 8}} - \sqrt {x + 4} }}{x}\)
Tìm \(M \in \left( C \right):y = \frac{{2x + 1}}{{x - 1}}\) sao cho khoảng cách từ điểm M đến tiệm cận đứng bằng hai lần khoảng các từ điểm M đến tiệm cận ngang.
Tìm giá trị của m để hàm số \(y = \frac{{{x^2} - 2mx + 3{m^2}}}{{2m - x}}\) nghịch biến trên khoảng \(\left( {1; + \infty } \right)\)


