Tập xác định \(D\) của hàm số \(y = {\left( {x - 2} \right)^{\sqrt 2 }}\) là
lượt xem
Tập xác định \(D\) của hàm số \(y = {\log _3}\left( {{{\log }_2}x} \right)\) là
lượt xem
Với \(a,b\) là hai số thực dương và \(a \ne 1\), \({\log _{\sqrt a }}\left( {a\sqrt b } \right)\) bằng
lượt xem
Cho \({\log _{\dfrac{1}{2}}}\left( {\dfrac{1}{5}} \right) = a\). Khẳng định nào dưới đây đúng?
lượt xem
Tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) là đường thẳng có phương trình
lượt xem
Hàm số \(y = f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^3}\left( {2 - 3x} \right)\). Số điểm cực trị của hàm số \(f\left( x \right)\) là
lượt xem
Hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
.png)
Khẳng định nào dưới đây là đúng?
lượt xem
Trong các hàm số sau, hàm số nào đồng biến trên \(\mathbb{R}\)?
lượt xem
Cho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình dưới đây.
.png)
Tìm số nghiệm thực của phương trình \(f\left( x \right) = 1\)
lượt xem
Điểm cực đại của đồ thị hàm số \(y = {x^3} + 3{x^2} + 2\) là
lượt xem
Hàm số \(y = \left( {{x^3} - 3x + 3} \right){e^x}\) có đạo hàm là:
lượt xem
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên
.png)
Khẳng định nào sau đây đúng ?
lượt xem
Thể tích của khối cầu có bán kính \(6cm\) là
lượt xem
Khoảng đồng biến của hàm số \(y = \sqrt {2x - {x^2}} \) là:
lượt xem
Cho hàm số \(y = {\log _2}{x^2}\). Khẳng định nào sau đây là sai?
lượt xem
Cho hình lập phương có đường chéo bằng \(2\sqrt 3 \) . Thể tích mặt cầu ngoại tiếp hình lập phương đó là
lượt xem
Cho đồ thị hàm số \(y = f(x)\) như hình vẽ.
Diện tích \(S\) của hình phẳng được giới hạn bởi đồ thị hàm số \(y = f(x)\) và trục \({\rm{Ox}}\) (phần gạch sọc) được tính bởi công thức
lượt xem
Hàm số \(y = {x^4} - 3{x^2} + 1\) có
lượt xem
Giả sử \(f\) là hàm số liên tục trên khoảng \(K\) và \(a,\) \(b,\) \(c\) là ba số bất kỳ trên khoảng \(K\) . Khẳng định nào sau đây sai?
lượt xem
Gọi \(M\)và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = - {x^4} + 8{x^2} - 2\) trên đoạn \(\left[ { - 3;1} \right]\). Tính \(M + m\) ?
lượt xem
Cho hình nón bán kính đáy bằng 4 . Biết rằng khi cắt hình nón đã cho bởi mặt phẳng đi qua trục ta được thiết diện là một tam giác đều. Diện tích xung quanh của hình nón đã cho bằng
lượt xem
Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 4x + 3\), trục hoành và hai đường thẳng \(x = 1,x = 2\) bằng
lượt xem
Tích phân \(\int\limits_0^\pi {{\rm{co}}{{\rm{s}}^2}x.{\mathop{\rm s}\nolimits} {\rm{in}}} \)\(xdx\)bằng
lượt xem
Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh 2\(a\), \(SA \bot \left( {ABC} \right)\),\(SA = a\). Thể tích khối chóp \(S.ABC\) bằng
lượt xem
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên
Mệnh đề nào dưới đây đúng?
lượt xem
Trong không gian \({\rm{Ox}}yz\), tìm hình chiếu \(H\) của điểm \(A(1; - 2;3)\) trên mặt phẳng \({\rm{(Ox}}y)\)
lượt xem
Tính tích phân \(I = \int\limits_1^2 {x{e^x}dx} \)
lượt xem
Trong không gian\({\rm{Ox}}yz\), gọi \(A,B,C\) lần lượt là hình chiếu vuông góc của điểm \(M( - 1;1;2)\)trên các trục \({\rm{Ox}},Oy,Oz\). Viết phương trình mặt phẳng \((ABC)\)
lượt xem
Trong không gian\({\rm{Ox}}yz\). Biết mặt cầu \((S)\) đi qua gốc tọa độ \(O\) và các điểm \(A( - 4;0;0)\), \(B(0;2;0)\), \(C\left( {0;0;4} \right)\). Phương trình \(\left( S \right)\)
lượt xem
Tập nghiệm S của bất phương trình \({\log _2}(5 - x) < 1\) là:
lượt xem
Cho lăng trụ tam giác đều có tất cả các cạnh đều bằng \(\sqrt 3 \). Thể tích của khối lăng trụ đã cho bằng
lượt xem
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \dfrac{1}{3}{x^3} - m{x^2} + 4x + 2\) đồng biến trên tập xác định của nó?
lượt xem
Diện tích hình phẳng giới hạn bởi đồ thị hàm số\((C):y = \dfrac{{ - 3x - 1}}{{x - 1}}\) và hai trục tọa độ là \(S = 4\ln \dfrac{a}{b} - 1\) (\(a,b\) là hai số nguyên tố cùng nhau). Tính \(a - 2b\)
lượt xem
Cho hàm số \(f(x)\) có đạo hàm trên đoạn \(\left[ {1;3} \right]\),\(f(3) = 5\) và \(\int\limits_1^3 {f'\left( x \right)dx} = 6\). Khi đó \(f(1)\) bằng
lượt xem
Với giá trị nào của \(x\) thì hàm số \(f(x) = {\log _5}\left( {{x^2} - x - 2} \right)\) xác định
lượt xem
Cho hai số thực \(a\) và \(b\) dương khác 1 với \({a^{\dfrac{4}{5}}} < {a^{\dfrac{1}{2}}}\) và \({\log _b}\dfrac{1}{3} > {\log _b}\dfrac{3}{5}\). Mệnh đề nào dưới đây đúng?
lượt xem
Trong không gian \({\rm{Ox}}yz\), cho tam giác\(ABC\) có trọng tâm \(G\), biết \(A\left( {1;2;0} \right)\), \(B\left( { - 4;5;3} \right)\), \(G\left( {0; - 1; - 1} \right)\). Tìm tọa độ điểm \(C\)
lượt xem
Tính diện tích \(S\) của hình phẳng \(\left( H \right)\) giới hạn bởi các đường cong\(y = - {x^3} + 12x\) và \(y = - {x^2}\)
lượt xem
Cho hàm số \(y = f(x)\) có bảng biến thiên như sau
Số đường tiệm cận của đồ thị hàm số là:
lượt xem
Cho hàm số \(f(x)\) liên tục trên \(\left[ {a;b} \right]\). Hãy chọn khẳng định đúng:
lượt xem
Trong không gian \({\rm{Ox}}yz\), cho hai điểm \(M( - 1;5;3)\),\(N(1;3;5)\). Viết phương trình mặt phẳng trung trực \((P)\) của đoạn \(MN\)
lượt xem
Tích phân \(I = \int\limits_0^1 {\dfrac{1}{{{x^2} - x - 2}}} dx\)có giá trị bằng
lượt xem
Cho \(f(x)\),\(g(x)\) là các hàm số xác định và liên tục trên \(R\) . Trong các mệnh đề sau, mệnh đề nào sai?
lượt xem
Cho hàm số \(y = f(x)\) liên tục trên \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f(x)\), trục \(Ox\) và các đường thẳng \(x = a\),\(x = b\) là:
lượt xem
Trong không gian \(Oxyz\), viết phương trình mặt phẳng \((P)\) đi qua điểm \(A(2;1; - 3)\), song song với trục \(Oz\) và vuông góc với mặt phẳng \((Q):x + y - 3z = 0\)
lượt xem
Tìm mệnh đề sai trong các mệnh đề sau:
lượt xem
Trong không gian \(Oxyz\), viết phương trình mặt phẳng \((P)\) đi qua điểm \(A(2;1; - 3)\), song song với trục \(Oz\) và vuông góc với mặt phẳng \((Q):x + y - 3z = 0\)
lượt xem
Đường tiệm cận ngang của đồ thị hàm số\(y = \dfrac{{x - 3}}{\begin{array}{l}x - 1\\\end{array}}\) có phương trình là
lượt xem
Cho hình trụ có diện tích xung quanh bằng \(8\pi {a^2}\) và độ dài đường sinh bằng \(a\). Tính thể tích hình trụ đã cho
lượt xem
Số nghiệm nguyên nhỏ hơn 10 của bất phương trình \({25^x} + {5.5^x} - 6 \ge 0\) là:
lượt xem