Xét số phức z thỏa mãn \(\left| z+3-2i \right|+\left| z-3+i \right|=3\sqrt{5}\). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=\left| z+2 \right|+\left| z-1-3i \right|\). Khi đó
A. \(M=\sqrt{17}+\sqrt{5},\text{ }m=3\sqrt{2}.\)
B. \(M=\sqrt{26}+2\sqrt{5},\text{ }m=3\sqrt{2}.\)
C. \(M=\sqrt{26}+2\sqrt{5},\text{ }m=\sqrt{2}.\)
D. \(M=\sqrt{17}+\sqrt{5},\text{ }m=\sqrt{2}.\)
Lời giải của giáo viên
ToanVN.com
Gọi \(A\left( -3;2 \right),B\left( 3;-1 \right),C\left( -2;0 \right),D\left( 1;3 \right)\)
Từ giả thiết suy ra tập hợp điểm biểu diễn z là đoạn thẳng AB. Bài toán trở thành tìm giá trị lớn nhất và giá trị nhỏ nhất của NC+ND, với N là một điểm bất kì trên đoạn AB.
.jpg.png)
Dễ thấy CD cắt AB nên NC+ND nhỏ nhất khi C,N,D thẳng hàng, \(\text{ }\Rightarrow m=CD=3\sqrt{2}\).
\(NC+ND\le \sqrt{2}\sqrt{N{{C}^{2}}+N{{D}^{2}}}\)
Gọi I là trung điểm CD, \(N{{C}^{2}}+N{{D}^{2}}=2N{{I}^{2}}+\frac{C{{D}^{2}}}{2}\). Gọi H là hình chiếu của I lên CD, do AH<HB nên NI lớn nhất khi N trùng B.
Vậy \(M=CB+DB=\sqrt{26}+2\sqrt{5}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) có bảng xét dấu của đạo hàm \({{f}^{\prime }}(x)\) như sau:
.png)
Hàm số f(x) có bao nhiêu điềm cực trị?
Nếu \(\int\limits_{0}^{2}{\left[ 2f\left( x \right)+x \right]dx=5}\) thì \(\int\limits_{0}^{2}{f\left( x \right)dx}\) bằng
Cho hàm số \(f\left( x \right)=\cos 3x\). Trong các khẳng định sau, khẳng định nào đúng?
Có bao nhiêu số nguyên dương y sao cho ứng với mỗi y có không quá 5 số nguyên x thỏa mãn \(\left( {{3}^{x+1}}-\sqrt{3} \right)\left( {{3}^{x}}-y \right)<0?\)
Trong không gian với hệ tọa độ Oxy, gọi d đi qua \(A\left( 3;-1;1 \right)\), nằm trong mặt phẳng \(\left( P \right):x-y+z-5=0\), đồng thời tạo với \(\Delta :\frac{x}{1}=\frac{y-2}{2}=\frac{z}{2}\) một góc \(45{}^\circ \). Phương trình đường thẳng d là
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Trong không gian với hệ toạ độ Oxyz, cho mặt cầu \(\left( S \right):\,{{x}^{2}}\,+\,{{y}^{2}}\,+\,{{z}^{2}}\,=\,3\). Một mặt phẳng \(\left( \alpha \right)\) tiếp xúc với mặt cầu \(\left( S \right)\) và cắt các tia \(Ox,\,Oy,\,Oz\) lần lượt tại các điểm \(A,\,B,\,C\) thoả mãn \(O{{A}^{2}}\,+\,O{{B}^{2}}\,+\,O{{C}^{2}}\,=\,27\). Diện tích của tam giác ABC bằng
Nếu \(\int_{-1}^{2}{f}\left( x \right)\text{d}x=2\) và \(\int_{2}^{5}{f}\left( x \right)\text{d}x=-3\) thì \(\int_{-1}^{5}{f}\left( x \right)\text{d}x\) bằng
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=2\) và \({{u}_{5}}=18\). Giá trị của \({{u}_{3}}\) bằng
Tính môđun của số phức z thỏa mãn \(\left( 1+i \right).z.\left| z \right|-1=\left( i-2 \right)\left| z \right|\) và \(\left| z \right|\) là một số nguyên
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} 4x - \sqrt {4x + 9} \,\,\,{\rm{khi}}\,\,x > 0\\ 4a + {\tan ^2}\,x\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x \le 0 \end{array} \right.\), đồng thời \(I = \int\limits_{ - \frac{\pi }{4}}^4 {f\left( x \right)dx} = \frac{{50}}{3}\). Tính a.
Đồ thị của hàm số \(y={{x}^{3}}-3x+2\) cắt trục hoành tại điểm có hoành độ bằng


