Xét các số phức z thỏa mãn \(\left| z \right|=1\). Đặt \(\text{w}=\frac{2\text{z}-i}{2+iz}\), giá trị lớn nhất của biểu thức \(P=\left| \text{w}+3i \right|\) là
A. \({{P}_{\max }}=2\)
B. \({{P}_{\max }}=3\)
C. \({{P}_{\max }}=4\)
D. \({{P}_{\max }}=5\)
Lời giải của giáo viên
ToanVN.com
Ta có: \(\text{w}=\frac{2\text{z}-i}{2+iz}\Leftrightarrow \text{w}(2+iz)=2\text{z}-i\Leftrightarrow 2w+\text{w}iz=2z-i\)
\(\text{w}=\frac{2\text{z}-i}{2+iz}\)
Đặt \(\text{w}=x+yi\Leftrightarrow 4{{\text{x}}^{2}}+{{(2y+1)}^{2}}=\left[ {{(y+2)}^{2}}+{{x}^{2}} \right]\Leftrightarrow 3{{\text{x}}^{2}}+3{{y}^{2}}=3\Leftrightarrow {{x}^{2}}+{{y}^{2}}=1\).
Vậy w thuộc đường tròn tâm O(0;0) bán kính \(R=1\Rightarrow {{P}_{\max }}=3+1=4\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối nón có độ dài đường sinh bằng 2a, góc giữa đường sinh và đáy bằng \(60{}^\circ \). Thể tích của khối nón đã cho là:
Cho hàm số \(y=f'\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ bên cạnh và hàm số \(\left( C \right):y=f\left( x \right)-\frac{1}{2}{{x}^{2}}-1\). Khẳng định nào sau đây là khẳng định sai?
.jpg.png)
Cho hàm số \(f\left( a \right)=\frac{{{a}^{\frac{2}{3}}}\left( \sqrt[3]{{{a}^{-2}}}-\sqrt[3]{a} \right)}{{{a}^{\frac{1}{8}}}\left( \sqrt[8]{{{a}^{3}}}-\sqrt[8]{{{a}^{-1}}} \right)}\) với \(a>0,\,\,a\ne 1\). Giá trị của \(M=f\left( {{2019}^{2018}} \right)\) là
Cho hàm số \(y=f\left( x \right)\) có đạo hàm là \(f'\left( x \right)={{\left( x-2 \right)}^{4}}\left( x-1 \right)\left( x+3 \right)\sqrt{{{x}^{2}}+3}\). Tìm số điểm cực trị của hàm số \(y=f\left( x \right)\):
Đường thẳng \(\Delta \) là giao của hai mặt phẳng \(\left( P \right):x+y-z=0\) và \(\left( Q \right):x-2y+3=0\) thì có phương trình là:
Họ nguyên hàm của hàm số \(f\left( x \right)={{e}^{2x}}+{{x}^{2}}\) là:
Cho hàm số \(f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
.jpg.png)
Thể tích của khối lăng trụ tam giác đều có cạnh đáy bằng a và độ dài cạnh bên bằng 2a là:
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( a{{b}^{2}} \right)\) bằng
Tiếp tuyến của đồ thị hàm số \(y=-{{x}^{3}}+3x-2\) tại điểm có hoành độ \({{x}_{0}}=2\) có phương trình là
Trong không gian \(Oxyz\), đường thẳng \(d:\frac{x-1}{2}=\frac{y}{1}=\frac{z}{3}\) đi qua điểm nào dưới đây?
Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật tâm \(O,\ SD\bot \left( ABCD \right),AD=a\) và \(\widehat{AOD}=60{}^\circ \). Biết SC tạo với đáy một góc \(45{}^\circ \). Tính khoảng cách giữa hai đường thẳng AC và SB.
Phương trình mặt cầu \(\left( S \right)\) có tâm \(I\left( 1;-2;3 \right)\) và tiếp xúc với mặt phẳng \(\left( P \right):x-2y+2=0\) là:
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=-{{x}^{4}}+2{{x}^{2}}-1\) trên đoạn \(\left[ -2;1 \right]\). Tính \(M+m\)?


