Xếp 10 quyển sách tham khảo khác nhau gồm: 1 quyển sách Văn, 3 quyển sách tiếng Anh và 6 quyển sách Toán thành một hàng ngang trên giá sách. Tính xác suất để mỗi quyển sách tiếng Anh đều được xếp ở giữa hai quyển sách Toán, đồng thời hai quyển Toán T1 và Toán T2 luôn được xếp cạnh nhau.
A. \(\frac{1}{450}\)
B. \(\frac{1}{600}\)
C. \(\frac{1}{300}\)
D. \(\frac{1}{210}\)
Lời giải của giáo viên
ToanVN.com
Xếp 10 quyển sách thành một hàng ngang trên giá sách có: \({{n}_{\Omega }}=10!\) cách xếp.
Gọi biến cố A: “Sắp xếp 10 quyển sách đã cho thành hàng ngang sao cho mỗi quyển sách tiếng Anh đều được xếp ở giữa hai quyển sách Toán, đồng thời hai quyển sách Toán T1 và Toán T2 luôn được xếp cạnh nhau”.
Sắp xếp 2 quyển sách Toán T1 và Toán T2 có: 2! cách.
Sắp xếp 6 quyển sách Toán sao cho hai quyển Toán T1 và Toán T2 cạnh nhau có: 2!.5! cách xếp.
Khi đó ta có 4 vị trí để sắp xếp 3 quyển sách sao cho sách tiếng Anh ở giữa hai quyển Toán và 3 cách xếp quyển tiếng Anh.
\(\Rightarrow {{n}_{A}}=2!.5!.\left( C_{4}^{3}.3! \right).3=17280\)
\(\Rightarrow P\left( A \right)=\frac{{{n}_{A}}}{{{n}_{\Omega }}}=\frac{17280}{10!}=\frac{1}{210}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tính thể tích V của khối lập phương ABCD.A'B'C'D'. Biết \(AC'=a\sqrt{3}.\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên \(SA=a\sqrt{5},\) mặt bên SAB là tam giác cân đỉnh S và thuộc mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng AD và SC bằng:
.png)
Hàm số nào trong bốn hàm số sau có bảng biến thiên như hình vẽ sau?
.png)
Đồ thị hàm số \(y=\frac{{{x}^{4}}}{2}-{{x}^{2}}+3\) có mấy điểm cực trị
Cho đồ thị hàm số \(y=\frac{\sqrt{4-{{x}^{2}}}}{{{x}^{2}}-3x-4}\) có tất cả bao nhiêu đường tiệm cận?
Cho hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+1\). Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\left| f\left( \sin x+\sqrt{3}\cos x \right)+m \right|\) có giá trị nhỏ nhất không vượt quá 5?
Có bao nhiêu số có ba chữ số đôi một khác nhau mà các chữ số đó thuộc tập hợp \(\left\{ 1;2;3;...;9 \right\}?\)
Cho lăng trụ đứng tam giác ABC.A'B'C'. Biết tam giác ABC đều cạnh a và \(AA'=a\sqrt{3}.\) Góc giữa hai đường thẳng AB' và mặt phẳng (A'B'C') bằng bao nhiêu?
Cho hình chóp S.ABCD đáy là hình chữ nhật có \(AB=2a\sqrt{3},AD=2a.\) Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABD là:
Cho hàm số \(y=a{{x}^{4}}+b{{x}^{2}}+c\) có đồ thị như hình vẽ bên.
.jpg.png)
Mệnh đề nào dưới đây đúng?
Cho hình chóp tứ giác đều có cạnh đáy bằng \(a\) và cạnh bên bằng \(a\sqrt{3}.\) Tính thể tích \(V\) của khối chóp đó theo \(a.\)
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và \(SA=2\sqrt{3}a.\) Tính thể tích V của khối chóp S.ABC.
Cho hàm số \(y={{x}^{3}}-\frac{3}{2}{{x}^{2}}+1.\) Gọi M là giá trị lớn nhất của hàm số trên \(\left( -25;\frac{11}{10} \right).\) Tìm M.
.jpg.png)


