Câu hỏi Đáp án 3 năm trước 38

Từ một tấm bạt hình chữ nhật có kích thước \(12m\,\times \,6m\) như hình vẽ. Một nhóm học sinh trong quá trình đi dã ngoại đã gập đôi tấm bạt lại theo đoạn nối trung điểm 2 cạnh là chiều rộng của tấm bạt sao cho 2 mép chiều dài của tấm bạt sát đất và cách nhau \(x\,\,\,(m)\) (như hình vẽ). Tìm x để khoảng không gian trong lều là lớn nhất

A. x = 4

B. \(x = 3\sqrt 2 \)

Đáp án chính xác ✅

C. x = 3

D. \(x = 3\sqrt 3 \)

Lời giải của giáo viên

verified ToanVN.com

Phần không gian trong lều được tính bởi công thức thể tích hình lăng trụ đứng.

Ta có: \(V=h.{{S}_{\Delta ABC}}=12.{{S}_{\Delta ABC}}\). Như vậy để thể tích lớn nhất khi diện tích tam giác đáy ABC là lớn nhất.

Trong tam giác đáy ABC, vẽ đường cao AH. Ta có \(AH=\sqrt{9-\frac{{{x}^{2}}}{4}}.\)

Do đó diện tích: \({{S}_{\Delta ABC}}=\frac{1}{2}x.\sqrt{9-\frac{{{x}^{2}}}{4}}=\frac{1}{4}x\sqrt{36-{{x}^{2}}}.\)

Xét hàm \(S(x)=\frac{1}{4}x\sqrt{36-{{x}^{2}}}\) với \(x\in (0;6);\)

\({S}'(x)=\frac{1}{4}\left( \sqrt{36-{{x}^{2}}}+x\frac{-x}{\sqrt{36-{{x}^{2}}}} \right)=\frac{1}{4}.\frac{36-{{x}^{2}}-{{x}^{2}}}{\sqrt{36-{{x}^{2}}}}\)

\({S}'(x)=0\Leftrightarrow 36-2{{x}^{2}}=0\Leftrightarrow x=3\sqrt{2}.\)

Bảng biến thiên:

Vậy với \(x = 3\sqrt 2 \left( m \right)\) thì thể tích lều là lớn nhất.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:

Số điểm cực trị của hàm số đã cho bằng

Xem lời giải » 3 năm trước 79
Câu 2: Trắc nghiệm

Đồ thị của hàm số \(y={{x}^{4}}+4{{x}^{2}}-3\) cắt trục hoành tại bao nhiêu điểm?

Xem lời giải » 3 năm trước 69
Câu 3: Trắc nghiệm

Trong các hàm số sau, hàm số nào đồng biến trên \(\mathbb{R}\)?

Xem lời giải » 3 năm trước 68
Câu 4: Trắc nghiệm

Cho hàm số \(y = {x^2}{e^{ - x}}\). Khẳng định nào sau đây là đúng ?

Xem lời giải » 3 năm trước 68
Câu 5: Trắc nghiệm

Cho hàm số \(f\left( x \right)=\sin 3x\). Trong các khẳng định sau, khẳng định nào đúng?

Xem lời giải » 3 năm trước 66
Câu 6: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(SA\bot \left( ABCD \right)\) và SA=a, góc giữa SC và mặt phẳng \(\left( SAB \right)\) bằng \({{30}^{0}}\) (tham khảo hình vẽ). Thể tích của khối chóp S.ABCD bằng:

Xem lời giải » 3 năm trước 64
Câu 7: Trắc nghiệm

Cho hàm số \(f(x)={{x}^{3}}-3{{x}^{2}}+1\) và \(g(x)=f\left( \left| f(x) \right|-m \right)\) cùng với x=-1;x=1 là hai điểm cực trị trong nhiều điểm cực trị của hàm số y=g(x). Khi đó số điểm cực trị của hàm y=g(x) là

Xem lời giải » 3 năm trước 63
Câu 8: Trắc nghiệm

Cho hình chóp​​ S.ABCD​​ có đáy​​ ABCD là hình vuông cạnh​​ a, cạnh bên​​ SA$​ vuông góc với đáy và \(SA=a\sqrt{2}\). Tính thể tích khối chóp S.ABCD.

Xem lời giải » 3 năm trước 63
Câu 9: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(SA\bot \left( ABCD \right)\) và SA=a. Khoảng cách từ điểm A đến mặt phẳng \(\left( SBD \right)\) bằng

Xem lời giải » 3 năm trước 61
Câu 10: Trắc nghiệm

Cho \(\int\limits_{0}^{4}{f\left( x \right)dx=3}\) và \(\int\limits_{0}^{2}{g\left( 2x \right)dx=4}\). Tính \(\int\limits_{0}^{4}{\left[ f\left( x \right)-g\left( x \right) \right]dx}\)

Xem lời giải » 3 năm trước 61
Câu 11: Trắc nghiệm

Gọi \(l,h,r\) lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình trụ. Công thức đúng là:

Xem lời giải » 3 năm trước 61
Câu 12: Trắc nghiệm

Cho \(\int\limits_{1}^{3}{f\left( x \right)\text{d}x}=-5, \int\limits_{1}^{3}{\left[ f\left( x \right)-2g\left( x \right) \right]\text{d}x}=9\). Tính \(\int\limits_{1}^{3}{g\left( x \right)\text{d}x}\).

Xem lời giải » 3 năm trước 61
Câu 13: Trắc nghiệm

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên dưới?

Xem lời giải » 3 năm trước 61
Câu 14: Trắc nghiệm

Số phức liên hợp của số phức \(z={{(2+i)}^{2}}\) là số phức

Xem lời giải » 3 năm trước 60
Câu 15: Trắc nghiệm

Tìm độ dài đường kính của mặt cầu \(\left( S \right)\) có phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2y+4z+2=0\).

Xem lời giải » 3 năm trước 60

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »