Lời giải của giáo viên
ToanVN.com
Ta có: \(f(x) = {x^3} - 3{x^2} + 1\) và \(g(x) = f\left( {\left| {f(x)} \right| - m} \right);f( - 1) = - 3;f(1) = - 1;\)
Suy ra \(g'(x) = {\left( {\left| {f(x)} \right|} \right)^\prime }.f'\left( {\left| {f(x)} \right| - m} \right) = \frac{{f(x)f'(x)}}{{\sqrt {{f^2}(x)} }}.f'\left( {\left| {f(x)} \right| - m} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l} x = 0;x = 2\\ \left| {f(x)} \right| - m = 0\\ \left| {f(x)} \right| - m = 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0;x = 2\\ \left| {f(x)} \right| = m\\ \left| {f(x)} \right| = m + 2 \end{array} \right.\)(*)
Mặt khác, \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = {a_1} \in \left( { - 1;0} \right) \approx - 0.53,\\ x = {b_1} \in \left( {0;1} \right) \approx 0.65\\ x = {c_1} \in \left( {2;3} \right) \approx 2.8 \end{array} \right.\) nên các điểm \(x = {a_1};x = {b_1};x = {c_1}\) là các điểm cực trị của g(x).
Để hai điểm x = - 1;x = 1 là hai điểm cực trị của hàm số y = g(x) thì hai giá trị x đó phải là nghiệm của hệ phương trình:
\(\left\{ \begin{array}{l} \left[ \begin{array}{l} \left| {f(x)} \right| = m\\ \left| {f(x)} \right| = m + 2 \end{array} \right.\\ \left| {f( - 1)} \right| = 3;\left| {f(1)} \right| = 1; \end{array} \right. \Rightarrow \left[ \begin{array}{l} m = 3\\ m = 1\\ m + 2 = 3\\ m + 2 = 1 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} m = - 1\\ m = 1\\ m = 3 \end{array} \right.\)
- Với m = 3 thì suy ra \(\left[ \begin{array}{l} \left| {f(x)} \right| = 3\\ \left| {f(x)} \right| = 5 \end{array} \right.\), tới đây ta nhận thấy hệ phương trình trên không có nghiệm x = - 1;x = 1 nên ta loại
- Với m = -1 thì suy ra \(\left[ \begin{array}{l} \left| {f(x)} \right| = - 1\\ \left| {f(x)} \right| = 1 \end{array} \right.\), tới đây ta nhận thấy hệ phương trình kia không có nghiệm x = -1 nên ta loại
- Với m = 1 thì suy ra \(\left[ \begin{array}{l} \left| {f(x)} \right| = 1\\ \left| {f(x)} \right| = 3 \end{array} \right.\). Do hệ phương trình này có hai nghiệm x = - 1;x = 1 nên hệ phương trình tương đương với (dựa vào đồ thị hình bên)
.jpg.png)
Suy ra \(\left[ \begin{array}{l} x = a \in \left( { - 1;0} \right)\\ x = 0\\ x = 1\\ x = b \in \left( {2;3} \right)\\ x = 3\\ x = - 1\\ x = 2\\ x = c \in \left( {3,4} \right) \end{array} \right.\). Do x = 0,x = 2 là nghiệm bội chẵn nên \(\left[ \begin{array}{l} x = a \in \left( { - 1;0} \right)\\ x = 1\\ x = b \in \left( {2;3} \right)\\ x = 3\\ x = - 1\\ x = c \in \left( {3,4} \right) \end{array} \right.\) là 6 nghiệm bội lẻ.
Như vậy hệ phương trình (*) có tổng cộng 11 nghiệm tương đương với hàm số y = g(x) có 11 điểm cực trị thỏa đề bài.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
.png)
Số điểm cực trị của hàm số đã cho bằng
Đồ thị của hàm số \(y={{x}^{4}}+4{{x}^{2}}-3\) cắt trục hoành tại bao nhiêu điểm?
Trong các hàm số sau, hàm số nào đồng biến trên \(\mathbb{R}\)?
Cho hàm số \(y = {x^2}{e^{ - x}}\). Khẳng định nào sau đây là đúng ?
Cho hàm số \(f\left( x \right)=\sin 3x\). Trong các khẳng định sau, khẳng định nào đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(SA\bot \left( ABCD \right)\) và SA=a, góc giữa SC và mặt phẳng \(\left( SAB \right)\) bằng \({{30}^{0}}\) (tham khảo hình vẽ). Thể tích của khối chóp S.ABCD bằng:
.png)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA$ vuông góc với đáy và \(SA=a\sqrt{2}\). Tính thể tích khối chóp S.ABCD.
Cho \(\int\limits_{0}^{4}{f\left( x \right)dx=3}\) và \(\int\limits_{0}^{2}{g\left( 2x \right)dx=4}\). Tính \(\int\limits_{0}^{4}{\left[ f\left( x \right)-g\left( x \right) \right]dx}\)
Cho \(\int\limits_{1}^{3}{f\left( x \right)\text{d}x}=-5, \int\limits_{1}^{3}{\left[ f\left( x \right)-2g\left( x \right) \right]\text{d}x}=9\). Tính \(\int\limits_{1}^{3}{g\left( x \right)\text{d}x}\).
Gọi \(l,h,r\) lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình trụ. Công thức đúng là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(SA\bot \left( ABCD \right)\) và SA=a. Khoảng cách từ điểm A đến mặt phẳng \(\left( SBD \right)\) bằng
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên dưới?
.jpg.png)
Tìm độ dài đường kính của mặt cầu \(\left( S \right)\) có phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2y+4z+2=0\).
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x-z-5=0.\) Điểm nào dưới đây thuộc \(\left( P \right)\)?
Số phức liên hợp của số phức \(z={{(2+i)}^{2}}\) là số phức


