Trong truyện cổ tích Cây tre trăm đốt (các đốt được tính từ 1 đến 100), khi không vác được cây tre dài tận 100 đốt như vậy về nhà, anh Khoai ngồi khóc, Bụt liền hiện lên, bày cho anh ta : “Con hãy hô câu thần chú Xác suất, xác suất thì cây tre sẽ rời ra, con sẽ mang được về nhà”. Biết rằng cây tre 100 đốt được tách ra một cách ngẫu nhiên thành các đoạn ngắn có chiều dài là 2 đốt (có thể chỉ có một loại). Xác suất để có dố đoạn 3 đốt nhiều hơn số đoạn 5 đốt đúng 1 đoạn gần với giá trị nào trong các giá trị dưới đây ?
A. 0,142.
B. 0,152
C. 0,132.
D. 0,122.
Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Cho bất phương trình \(m{.9^{2{x^2} - x}} - (2m + 1){6^{2{x^2} - x}} + m{a^{2{x^2} - x}} \le 0\) . Tìm m để bất phương trinh nghiệm đúng \(\forall x \ge \frac{1}{2}\)
rong không gian với hệ toạ độ Oxyz Cho tam giác ABC với \(A\left( {1;2;1} \right);B\left( { - 3;0;3} \right);C\left( {2;4; - 1} \right)\) . Tìm toạ độ điểm D sao cho tứ giác ABCD là hình bình hành ?
Cho đồ thị hàm số \(y{\rm{ }} = {\rm{ }}lo{g_2}x\). Khẳng định nào sau đây sai ?
Tính đạo hàm của hàm số \(y = \frac{{x + 1}}{{\ln x}}(x > 0,x \ne 1)\)
Cho hàm số y = f(x) lien tục trên R thoả mãn \(f'(x) + 2x.f(x) = {e^{ - {x^2}}}\forall x \in R\) và f(0) = 0. Tính f(1)
Tìm nguyên hàm \(\int {\frac{1}{{x\sqrt {\ln x + 1} }}} dx\)
Cho hàm số y = f(x) có đạo hàm trên R và có đồ thị hàm số y =f’(x) như hình bên. Hàm số y = f(3 – x) đồng biến trên khoảng nào dưới đây?
Cho hàm số f(x) thoả mãn \(f'(x) = (x + 1){e^x}\) và f(0) = 1 . Tính f(2)
Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên:
Khẳng định nào sai?
Tìm tập xác định D của hàm số \(y{\rm{ }} = {\rm{ }}lo{g_3}\left( {{x^2}--{\rm{ }}x{\rm{ }} - {\rm{ }}2} \right).\)
Cho hình lăng trụ đều ABC.A’B’C’ có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích khối lăng trụ đó.
Tìm tất cả các giá trị thực của tham số m để hàm số \(y = {x^3} - 3{x^2} + mx + 2\) đồng biến trên R.
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ.
Hỏi hàm số y = f(f(x)) có bao nhiêu điểm cực trị ?
Trong không gian với hệ toạ độ Oxyz cho hai vectơ \(\overrightarrow a ( - 2; - 3;1)\) và \(\overrightarrow b (1;0;1)\).Tính \(\cos (\overrightarrow a ;\overrightarrow b )\)


