Trong không gian với hệ trục tọa độ Oxyz. Hãy viết phương trình chính tắc của đường thẳng qua \(A\left( 2\,;\,1\,;\,-1 \right)\) và vuông góc với mặt phẳng \(\left( \alpha \right):2x+y-z+5=0\)
A. \(\frac{{x + 2}}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{{ - 1}}\)
B. \(\frac{{x - 2}}{{ - 2}} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{1}\)
C. \(\frac{{x + 2}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 1}}{1}\)
D. \(\frac{{x - 2}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{{ - 1}}\)
Lời giải của giáo viên
ToanVN.com
Đường thẳng qua \(A\left( 2\,;\,1\,;\,-1 \right)\) và vuông góc với mặt phẳng \(\left( \alpha\right):2x+y-z+5=0\) có VTCP \(\overrightarrow{u}=\overrightarrow{{{n}_{\left( P \right)}}}=\left( 2\,;\,1\,;\,-1 \right)\) nên có phương trình chính tắc: \(\frac{x-2}{-2}=\frac{y-1}{-1}=\frac{z+1}{1}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Số giao điểm của đồ thị hàm số \(y={{x}^{3}}-2{{x}^{2}}+x-12\) và trục Ox là
Với a là số thực dương tùy ý, \(\sqrt[3]{{{a}^{4}}}\) bằng:
Cho \(\int\limits_{0}^{2}{f\left( x \right)\text{d}x=5}\). Tính tích phân \(I=\int\limits_{0}^{2}{\left[ {{x}^{2}}+2f\left( x \right) \right]\text{d}x}\).
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=5\) và \({{u}_{2}}=8\). Giá trị của \({{u}_{3}}\) bằng
Một khối chóp có thể tích là \(36{{a}^{3}}\) và diện tích mặt đáy là \(9{{a}^{2}}\). Chiều cao của khối chóp đó bằng
Trong không gian Oxyz, cho điểm \(A(1\,;\,-1\,;\,3)\) và hai đường thẳng \({{d}_{1}}:\frac{x-4}{1}=\frac{y+2}{4}=\frac{z-1}{-2}, {{d}_{2}}:\frac{x-2}{1}=\frac{y+1}{-1}=\frac{z-1}{1}\). Viết phương trình đường thẳng d đi qua A,vuông góc với đường thẳng \({{d}_{1}}\) và cắt đường thẳng \({{d}_{2}}\).
Một hình nón có đường kính đáy là 6cm, độ dài đường sinh là 3cm. Diện tích xung quanh của hình nón đó bằng
Cho hàm số \(f\left( x \right)\) bảng xét dấu của \(f'\left( x \right)\) như sau:
.png)
Số điểm cực trị của hàm số đã cho là
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có \(f\left( 0 \right)=1\) và đồ thị hàm số \(y=f'\left( x \right)\) như hình vẽ.
.jpg.png)
Hàm số \(y=\left| f\left( 3x \right)-9{{x}^{3}}-1 \right|\) đồng biến trên khoảng
Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị như hình vẽ, biết \(f\left( x \right)\) đạt cực tiểu tại điểm x=1 và thỏa mãn \(\left[ f\left( x \right)+1 \right]\) và \(\left[ f\left( x \right)-1 \right]\) lần lượt chia hết cho \({{\left( x-1 \right)}^{2}}\) và \({{\left( x+1 \right)}^{2}}\). Gọi \({{S}_{1}},{{S}_{2}}\) lần lượt là diện tích như trong hình bên. Tính \(2{{S}_{2}}+8{{S}_{1}}\).
.jpg.png)
Với a là số thực dương tùy ý, \({{\log }_{3}}\left( \frac{3}{a} \right)\) bằng:
Nghiệm của phương trình \({3^{{x^2} - 3x + 1}} = \frac{1}{3}\) là:
Cho hàm số \(f\left( x \right)=4{{x}^{3}}+{{e}^{x}}-1\). Trong các khẳng định sau, khẳng định nào đúng
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?


