Lời giải của giáo viên
ToanVN.com
Dựa vào hình dáng đồ thị hàm số, ta dễ dàng nhận diện đây là đồ thị hàm số trùng phương \(y=a{{x}^{4}}+b{{x}^{2}}+c\) với a<0.
CÂU HỎI CÙNG CHỦ ĐỀ
Số giao điểm của đồ thị hàm số \(y={{x}^{3}}-2{{x}^{2}}+x-12\) và trục Ox là
Với a là số thực dương tùy ý, \(\sqrt[3]{{{a}^{4}}}\) bằng:
Cho \(\int\limits_{0}^{2}{f\left( x \right)\text{d}x=5}\). Tính tích phân \(I=\int\limits_{0}^{2}{\left[ {{x}^{2}}+2f\left( x \right) \right]\text{d}x}\).
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=5\) và \({{u}_{2}}=8\). Giá trị của \({{u}_{3}}\) bằng
Một khối chóp có thể tích là \(36{{a}^{3}}\) và diện tích mặt đáy là \(9{{a}^{2}}\). Chiều cao của khối chóp đó bằng
Trong không gian Oxyz, cho điểm \(A(1\,;\,-1\,;\,3)\) và hai đường thẳng \({{d}_{1}}:\frac{x-4}{1}=\frac{y+2}{4}=\frac{z-1}{-2}, {{d}_{2}}:\frac{x-2}{1}=\frac{y+1}{-1}=\frac{z-1}{1}\). Viết phương trình đường thẳng d đi qua A,vuông góc với đường thẳng \({{d}_{1}}\) và cắt đường thẳng \({{d}_{2}}\).
Cho hàm số \(f\left( x \right)\) bảng xét dấu của \(f'\left( x \right)\) như sau:
.png)
Số điểm cực trị của hàm số đã cho là
Một hình nón có đường kính đáy là 6cm, độ dài đường sinh là 3cm. Diện tích xung quanh của hình nón đó bằng
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có \(f\left( 0 \right)=1\) và đồ thị hàm số \(y=f'\left( x \right)\) như hình vẽ.
.jpg.png)
Hàm số \(y=\left| f\left( 3x \right)-9{{x}^{3}}-1 \right|\) đồng biến trên khoảng
Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị như hình vẽ, biết \(f\left( x \right)\) đạt cực tiểu tại điểm x=1 và thỏa mãn \(\left[ f\left( x \right)+1 \right]\) và \(\left[ f\left( x \right)-1 \right]\) lần lượt chia hết cho \({{\left( x-1 \right)}^{2}}\) và \({{\left( x+1 \right)}^{2}}\). Gọi \({{S}_{1}},{{S}_{2}}\) lần lượt là diện tích như trong hình bên. Tính \(2{{S}_{2}}+8{{S}_{1}}\).
.jpg.png)
Với a là số thực dương tùy ý, \({{\log }_{3}}\left( \frac{3}{a} \right)\) bằng:
Nghiệm của phương trình \({3^{{x^2} - 3x + 1}} = \frac{1}{3}\) là:
Trong không gian với hệ trục tọa độ Oxyz. Hãy viết phương trình mặt cầu có tâm \(I\left( 2\,;\,2\,;\,3 \right)\) và tiếp xúc với mặt phẳng \(\left( Oxz \right)\).
Cho hàm số \(f\left( x \right)=4{{x}^{3}}+{{e}^{x}}-1\). Trong các khẳng định sau, khẳng định nào đúng


