Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm \(A\left( 0;-1;-2 \right)\) và \(B\left( 2;2;2 \right)\). Tọa độ trung điểm I của đoạn thẳng AB là
A. \(I\left( {2;1;0} \right)\)
B. \(I\left( {1;\frac{1}{2};0} \right)\)
C. \(I\left( {2;3;4} \right)\)
D. \(I\left( {1;\frac{3}{2};2} \right)\)
Lời giải của giáo viên
ToanVN.com
\(\left\{ \begin{array}{l} {x_I} = \frac{{{x_A} + {x_B}}}{2} = \frac{{0 + 2}}{2} = 1\\ {y_I} = \frac{{{y_A} + {y_B}}}{2} = \frac{{ - 1 + 2}}{2} = \frac{1}{2}\\ {z_I} = \frac{{{z_A} + {z_B}}}{2} = \frac{{ - 2 + 2}}{2} = 0 \end{array} \right.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
.png)
Số điểm cực trị của hàm số đã cho bằng
Đồ thị của hàm số \(y={{x}^{4}}+4{{x}^{2}}-3\) cắt trục hoành tại bao nhiêu điểm?
Trong các hàm số sau, hàm số nào đồng biến trên \(\mathbb{R}\)?
Cho hàm số \(y = {x^2}{e^{ - x}}\). Khẳng định nào sau đây là đúng ?
Cho hàm số \(f\left( x \right)=\sin 3x\). Trong các khẳng định sau, khẳng định nào đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(SA\bot \left( ABCD \right)\) và SA=a, góc giữa SC và mặt phẳng \(\left( SAB \right)\) bằng \({{30}^{0}}\) (tham khảo hình vẽ). Thể tích của khối chóp S.ABCD bằng:
.png)
Cho hàm số \(f(x)={{x}^{3}}-3{{x}^{2}}+1\) và \(g(x)=f\left( \left| f(x) \right|-m \right)\) cùng với x=-1;x=1 là hai điểm cực trị trong nhiều điểm cực trị của hàm số y=g(x). Khi đó số điểm cực trị của hàm y=g(x) là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA$ vuông góc với đáy và \(SA=a\sqrt{2}\). Tính thể tích khối chóp S.ABCD.
Cho \(\int\limits_{0}^{4}{f\left( x \right)dx=3}\) và \(\int\limits_{0}^{2}{g\left( 2x \right)dx=4}\). Tính \(\int\limits_{0}^{4}{\left[ f\left( x \right)-g\left( x \right) \right]dx}\)
Cho \(\int\limits_{1}^{3}{f\left( x \right)\text{d}x}=-5, \int\limits_{1}^{3}{\left[ f\left( x \right)-2g\left( x \right) \right]\text{d}x}=9\). Tính \(\int\limits_{1}^{3}{g\left( x \right)\text{d}x}\).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(SA\bot \left( ABCD \right)\) và SA=a. Khoảng cách từ điểm A đến mặt phẳng \(\left( SBD \right)\) bằng
Gọi \(l,h,r\) lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình trụ. Công thức đúng là:
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên dưới?
.jpg.png)
Số phức liên hợp của số phức \(z={{(2+i)}^{2}}\) là số phức
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x-z-5=0.\) Điểm nào dưới đây thuộc \(\left( P \right)\)?


