Trong không gian với hệ toạ độ \(Oxyz\), viết phương trình mặt phẳng \(\left( P \right)\) đi qua hai điểm \(A(1;1;1)\), \(B\left( {0;2;2} \right)\) đồng thời cắt các tia \(Ox,Oy\) lần lượt tại hai điểm \(M,N\) (không trùng với gốc tọa độ\(O\)) sao cho \(OM = 2ON\)
A. \(\left( P \right):2x + 3y - z - 4 = 0\).
B. \(\left( P \right):x + 2y - z - 2 = 0\).
C. \(\left( P \right):x - 2y - z + 2 = 0\).
D. \(\left( P \right):3x + y + 2z - 6 = 0\).
Lời giải của giáo viên
ToanVN.com
Gọi \(M\left( {a;0;0} \right),N\left( {0;b;0} \right)\) lần lượt là giao điểm của \(\left( P \right)\) với các tia \(Ox,Oy\)\(\left( {a,b > 0} \right)\)
Do \(OM = 2ON\)\( \Leftrightarrow a = 2b\)\( \Rightarrow \overrightarrow {MN} \left( { - 2b;b;0} \right) = - b\left( {2; - 1;0} \right)\) .Đặt \(\overrightarrow u \left( {2; - 1;0} \right)\)
Gọi \(\overrightarrow n \) là môt vectơ pháp tuyến của mặt phẳng \(\left( P \right)\)\( \Rightarrow \)\(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow {AB} } \right] = \left( { - 1;2;1} \right)\)
Phương trình măt phẳng \(\left( P \right):x - 2y - z + 2 = 0\).
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số y = sinx là một nguyên hàm của hàm số nào sau đây ?
Phép đối xứng qua mặt phẳng biến một điểm thuộc mặt phẳng đó thành:
Cho hàm số f(x) có đạo hàm trên R. Nếu hàm số f(x) đồng biến trên R thì
Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt {2 - x} ,\,y = x\) xung quanh trục Ox được tính theo công thức nào sau đây :
Tìm \(I = \int {\left( {2{x^2} - \dfrac{1}{{\sqrt[3]{x}}} - \dfrac{1}{{{{\cos }^2}x}}} \right)\,dx} \) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\).
Xét f(x) là một hàm số liên tục trê đoạn [a ; b], ( với a < b) và F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a ; b]. Mệnh đề nào dưới đây đúng ?
Diện tích hình phẳng giới hạn bởi \(y = \left( {e + 1} \right)x\,,\,\,y = \left( {{e^x} + 1} \right)x\) là:
Cho hàm số y = f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây đúng ?
Trong các kí hiệu sau, kí hiệu nào không phải của khối đa diện đều?
Trong không gian với hệ trục toạ độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\), điểm \(A\left( {0;0;2} \right)\). Phương trình mặt phẳng \(\left( P \right)\) đi qua \(A\) và cắt mặt cầu \(\left( S \right)\) theo thiết diện là hình tròn \(\left( C \right)\)có diện tích nhỏ nhất ?


