Trong không gian với hệ toạ độ \(Oxyz\),cho hai đường thẳng \({d_1},{d_2}\)lần lượt có phương trình \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y - 2}}{1} = \dfrac{{z - 3}}{3}\), \({d_2}:\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{{ - 1}} = \dfrac{{z - 1}}{4}\). Phương trình mặt phẳng \(\left( \alpha \right)\) cách đều hai đường thẳng \({d_1},{d_2}\) là:
A. \(7x - 2y - 4z = 0\).
B. \(7x - 2y - 4z + 3 = 0\).
C. \(2x + y + 3z + 3 = 0\).
D. \(14x - 4y - 8z + 3 = 0\).
Lời giải của giáo viên
ToanVN.com
Ta có \({d_1}\) đi qua \(A\left( {2;2;3} \right)\) và có \(\overrightarrow {{u_{{d_1}}}} = \left( {2;1;3} \right)\), \({d_2}\) đi qua \(B\left( {1;2;1} \right)\) và có \(\overrightarrow {{u_{{d_2}}}} = \left( {2; - 1;4} \right)\)
\(\overrightarrow {AB}= \left( { - 1;1; - 2} \right);\left[ {\overrightarrow {{u_{{d_1}}}}; \overrightarrow {{u_{{d_2}}}} } \right] = \left( {7; - 2; - 4} \right)\)
\( \Rightarrow \left[ {\overrightarrow {{u_{{d_1}}}}; \)\(\overrightarrow {{u_{{d_2}}}}} \right]\overrightarrow {AB}= - 1 \ne 0\) nên \({d_1},{d_2}\) chéo nhau.
Do \(\left( \alpha \right)\) cách đều \({d_1},{d_2}\) nên \(\left( \alpha \right)\) song song với \({d_1},{d_2}\)\( \Rightarrow \overrightarrow {{n_\alpha }} = \left[ {\overrightarrow {{u_{{d_1}}}} ;\overrightarrow {{u_{{d_2}}}} } \right] = \left( {7; - 2; - 4} \right)\)
\( \Rightarrow \left( \alpha \right)\) có dạng \(7x - 2y - 4z + d = 0\)
Theo giả thiết thì \(d\left( {A,\left( \alpha \right)} \right) = d\left( {B,\left( \alpha \right)} \right)\)\( \Leftrightarrow \dfrac{{\left| {d - 2} \right|}}{{\sqrt {69} }} = \dfrac{{\left| {d - 1} \right|}}{{\sqrt {69} }} \Leftrightarrow d = \dfrac{3}{2}\)
\( \Rightarrow \left( \alpha \right):14x - 4y - 8z + 3 = 0\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ toạ độ \(Oxyz\), gọi \(\left( \alpha \right)\)là mặt phẳng song song với mặt phẳng \(\left( \beta \right):2x - 4y + 4z + 3 = 0\) và cách điểm \(A\left( {2; - 3;4} \right)\) một khoảng \(k = 3\). Phương trình của mặt phẳng \(\left( \alpha \right)\) là:
Cho măt cầu \(\left( S \right)\) tâm \(O\), có bán kính bằng \(r = 5{\rm{ cm}}\). Đường thẳng \(\Delta \) cắt mặt cầu \(\left( S \right)\) theo một dây cung\(AB = 6{\rm{ cm}}\). Khoảng cách từ \(O\) đến đường thẳng \(\Delta \) bằng
Cho \(I = \int\limits_1^2 {2x\sqrt {{x^2} - 1} \,dx\,,\,\,u = {x^2} - 1} \). Khẳng định nào dưới đây sai ?
Mặt cầu tiếp xúc với các cạnh của tứ diện đều \(ABCD\) cạnh \(a\) có bán kính là?
Giá trị cực đại của hàm số \(y = {x^3} - 12x - 1\).
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình vuông tại \(A\) và \(D\) thỏa mãn \(SA \bot \left( {ABCD} \right)\) và \(AB = 2AD = 2CD = 2a = \sqrt 2 SA\). Thể tích khối chóp \(S.BCD\) là:
Tỉ số thể tích của khối trụ nội tiếp và khối trụ ngoại tiếp hình lập phương có cạnh bằng \(a\) bằng
Hàm số \(y = {x^3} - 3{x^2} + 3x - 4\) có bao nhiêu cực trị ?
Mặt cầu \(\left( S \right)\) có thể tích \(36\pi {\rm{ c}}{{\rm{m}}^3}\). Diện tích của mặt cầu \(\left( S \right)\) bằng
Cho \(c = {\log _{15}}3\). Khi đó giá trị của \({\log _{25}}15\) theo c là:
Cho hàm số y = f(x) có bảng biến thiên cho bởi bảng sau:
Kết luận nào sau đây sai?
Cho \(\int\limits_1^4 {f(x)\,dx = 9} \). Tính tích phân \(I = \int\limits_0^1 {f(3x + 1)\,dx} \) .
Mô đun của số phức z thỏa mãn \(\overline z = 8 - 6i\) là:
Nếu n chẵn thì điều kiện để \(\root n \of b \) có nghĩa là:


