Trong không gian tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{z}^{2}}=\frac{5}{6}\), mặt phẳng \(\left( P \right):x+y+z-1=0\) và điểm \(A\left( 1;1;1 \right)\). Điểm M thay đổi trên đường tròn giao tuyến của \(\left( P \right)\) và \(\left( S \right)\). Giá trị lớn nhất của \(P=AM\) là:
A. \(\sqrt{2}\)
B. \(\frac{3\sqrt{2}}{2}\)
C. \(\frac{2\sqrt{3}}{3}\)
D. \(\sqrt{\frac{35}{6}}\)
Lời giải của giáo viên
ToanVN.com
Gọi E là hình chiếu vuông góc của A trên \(\left( P \right)\).
Ta có: \(\overrightarrow{{{u}_{AI}}}=\overrightarrow{{{n}_{\left( P \right)}}}\left( 1;1;1 \right)\Rightarrow AE:\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-1}{1}\), giao điểm của AI và \(\left( P \right)\) là \(E\left( \frac{1}{3};\frac{1}{3};\frac{1}{3} \right)\).
Mặt cầu \(\left( S \right)\) có tâm \(I\left( 1;-1;0 \right)\) và bán kính \(R=\sqrt{\frac{5}{6}}\), bán kính đường tròn giao tuyến là \(r=\sqrt{{{R}^{2}}-d_{\left( I,\left( P \right) \right)}^{2}}=\frac{\sqrt{2}}{2}\). Gọi K là hình chiếu vuông góc của I trên \(\left( P \right)\Rightarrow IK:\left\{ \begin{align} & x=1+t \\ & y=-1+t \\ & z=t \\ \end{align} \right.\).
Giải \(1+t-1+t+t-1=0\Leftrightarrow t=\frac{1}{3}\Rightarrow K\left( \frac{4}{3};-\frac{2}{3};\frac{1}{3} \right)\).
Ta có \(A{{M}^{2}}=A{{E}^{2}}+E{{M}^{2}}\) lớn nhất khi \(E{{M}_{\max }}\).
Mặt khác \(E{{M}_{\max }}=EK+r=\sqrt{2}+\frac{\sqrt{2}}{2}=\frac{3\sqrt{2}}{2}\Rightarrow {{P}_{\max }}=\sqrt{EM_{\max }^{2}+A{{E}^{2}}}=\frac{\sqrt{210}}{6}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối nón có độ dài đường sinh bằng 2a, góc giữa đường sinh và đáy bằng \(60{}^\circ \). Thể tích của khối nón đã cho là:
Cho hàm số \(y=f'\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ bên cạnh và hàm số \(\left( C \right):y=f\left( x \right)-\frac{1}{2}{{x}^{2}}-1\). Khẳng định nào sau đây là khẳng định sai?
.jpg.png)
Cho hàm số \(f\left( a \right)=\frac{{{a}^{\frac{2}{3}}}\left( \sqrt[3]{{{a}^{-2}}}-\sqrt[3]{a} \right)}{{{a}^{\frac{1}{8}}}\left( \sqrt[8]{{{a}^{3}}}-\sqrt[8]{{{a}^{-1}}} \right)}\) với \(a>0,\,\,a\ne 1\). Giá trị của \(M=f\left( {{2019}^{2018}} \right)\) là
Cho hàm số \(y=f\left( x \right)\) có đạo hàm là \(f'\left( x \right)={{\left( x-2 \right)}^{4}}\left( x-1 \right)\left( x+3 \right)\sqrt{{{x}^{2}}+3}\). Tìm số điểm cực trị của hàm số \(y=f\left( x \right)\):
Đường thẳng \(\Delta \) là giao của hai mặt phẳng \(\left( P \right):x+y-z=0\) và \(\left( Q \right):x-2y+3=0\) thì có phương trình là:
Họ nguyên hàm của hàm số \(f\left( x \right)={{e}^{2x}}+{{x}^{2}}\) là:
Cho hàm số \(f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
.jpg.png)
Thể tích của khối lăng trụ tam giác đều có cạnh đáy bằng a và độ dài cạnh bên bằng 2a là:
Tiếp tuyến của đồ thị hàm số \(y=-{{x}^{3}}+3x-2\) tại điểm có hoành độ \({{x}_{0}}=2\) có phương trình là
Trong không gian \(Oxyz\), đường thẳng \(d:\frac{x-1}{2}=\frac{y}{1}=\frac{z}{3}\) đi qua điểm nào dưới đây?
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( a{{b}^{2}} \right)\) bằng
Phương trình mặt cầu \(\left( S \right)\) có tâm \(I\left( 1;-2;3 \right)\) và tiếp xúc với mặt phẳng \(\left( P \right):x-2y+2=0\) là:
Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật tâm \(O,\ SD\bot \left( ABCD \right),AD=a\) và \(\widehat{AOD}=60{}^\circ \). Biết SC tạo với đáy một góc \(45{}^\circ \). Tính khoảng cách giữa hai đường thẳng AC và SB.
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ:
.jpg.png)
Số điểm cực trị của hàm số đã cho là:


