Lời giải của giáo viên
ToanVN.com
Ta có: ABCD là hình bình hành \( \Leftrightarrow \overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow \left\{ \begin{array}{l}
{x_B} - {x_A} = {x_C} - {x_D}\\
{y_B} - {y_A} = {y_C} - {y_D}\\
{z_B} - {z_A} = {z_C} - {z_D}
\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}
- 1 - 1 = 0 - {x_D}\\
2 - 0 = - 1 - {y_D}\\
1 - 1 = 2 - {z_D}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{x_D} = 2\\
{y_D} = - 3\\
{z_D} = 2
\end{array} \right. \Leftrightarrow D\left( {2; - 3;2} \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Giá trị của biểu thức \(A = \sum\limits_{k = 1}^{2019} {C_{2019}^k{{.9}^k}} \) bằng
Cho hàm số \(y=a^x\) có đồ thị như hình bên. Giá trị của a là:
.png)
Cho hàm số \(y=f(x)\) có đồ thị như hình bên. Hàm số đã cho đồng biến trên khoảng
.png)
Cho lăng trụ đứng ABC.A’B’C’ có AA’ = 3, tam giác A’BC có diện tích bằng 6 và mặt phẳng (A’BC) tạo với mặt đáy góc \(60^0\). Thể tích của khối lăng trụ đã cho là
Cho hình chóp S.ABCD có đáy là hình chữ nhật, SA vuông góc với mặt phẳng (ABCD). Gọi H, K lần lượt là hình chiếu vuông góc của A lên các đường thẳng SB và SD. Biết \(HAK = {40^0}\). Góc giữa hai mặt phẳng (SBC) và (SCD) bằng
.png)
Cho hàm số \(y=f(x)\) có đạo hàm trên R và có bảng biến thiên như hình bên. Khẳng định nào sau đây là đúng?
Cho hình nón có góc ở đỉnh bằng \(80^0\). Góc giữa đường thẳng chứa một đường sinh và mặt phẳng chứa đường tròn đáy bằng
Cho tứ diện ABCD có \(AB = AC = AD = a,BAC = {60^0},CAD = {60^0},\) \(DAB = {90^0}\). Khoảng cách giữa hai đường thẳng AC và BD là
Giới hạn \(\mathop {\lim }\limits_{x \to - 1} \frac{{4x + 5}}{{7x + 8}}\) bằng
Trong không gian tọa độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 9\) và điểm M thay đổi trên mặt cầu. Giá trị lớn nhất của độ dài đoạn thẳng OM là
Cho hàm số \(y=f(x)\) có đạo hàm là hàm liên tục trên R thỏa mãn \(\int\limits_0^2 {f'\left( x \right)dx = 45,f\left( 0 \right) = 3} \). Giá trị của biểu thức \(f(2)\) bằng
Cho \(a,b \in R,a < b\) và hàm số \(y=F(x)\) là một nguyên hàm của hàm số \(y=\sin x\). Khẳng định nào sau đây là đúng?
Trong không gian tọa độ Oxyz, phương trình mặt cầu tâm I(2;- 3; - 4) bán kính 4 là
Khẳng định nào trong các khẳng định sau là khẳng định đúng?
Nền nhà tầng 1 của một hội trường có độ cao 0,8 mét so với mặt đất. Từ nền nhà tầng 1 lên nền nhà tầng 2 có 1 cầu thang 19 bậc, độ cao của các bậc (so với mặt đất) theo thứ tự lập thành một cấp số cộng \((u_n)\) có 19 số hạng, \({u_1} = 0,95;d = 0,15\) (đơn vị là m). Độ cao của bậc thứ 8 so với mặt đất là


